

Entropy Source and
DRNG Manager
...or /dev/random in User Space

Stephan Müller
<smueller@chronox.de>

 2

Agenda
● ESDM Goals
● ESDM Design
● Initial Seeding Strategies
● Entropy Sources

 3

ESDM Goals
● Full user space implementation

– No kernel changes needed – only if scheduler ES is requested
– Independent of political games of developers

● API and ABI compliant drop-in replacement of Linux /dev/random, /dev/urandom and getrandom(2)
● Minimal dependencies on environment

– Protobuf-c
– FUSE / CUSE support

● Runs fully unprivileged
● Sole use of cryptography for data processing
● Flexible configuration supporting wide range of use cases
● Standards compliance: SP800-90A/B/C, AIS 20/31, FIPS IG 7.19 / D.K (use of DRBG as conditioner)

 4

ESDM Design
● 7 Entropy Sources

– 5 external
– 2 internal
– All ES treated equally
– No domination by any ES – seeding

triggered by initialization process or DRNG
● All ES can be selectively disabled at

compile time
● ES data fed into DRNG
● DRNG accessible with APIs

 5

ESDM Components
● ESDM Server

– Using ESDM library
– Offering RPC Interface
– Protobuf-C RPC
– Sensitive operations require

privilege
● ESDM RPC library

– API for other clients
● /dev/random CUSE
● /dev/urandom CUSE
● /proc/sys/kernel/random FUSE
● libesdm-getrandom.so

ESDM library

ESDM Server

U
np

riv

R
P

C

/dev/random
CUSE daemon

R
P

C /dev/urandom
CUSE daemon

/proc/sys/kernel/random
FUSE daemon

getrandom
shared Library

P
riv

R
P

C
R

P
C

es
dm

-r
pc

-u
np

riv
.s

oc
ke

t
es

dm
-r

pc
-p

riv
.s

oc
ke

t

 6

DRNG Output APIs
● Blocking APIs – deliver data only after fully initialized and fully seeded

– When Linux compliant interfaces enabled:
● /dev/random
● getrandom() system call

● Prediction Resistance API – deliver data only after fully initialized and successful reseed returning at most
data equal to the amount of entropy
– ESDM RPC client API
– Using /dev/random with O_SYNC
– Using getrandom(2) with flag GRND_RANDOM
– Compliant with:

● FIPS IG 7.19 / D.K to use DRBG as conditioning component for seeding other DRBGs
● German AIS 20/31 (2011 and draft 2022) NTG.1 requirements

● Get seed: getrandom(2) with flag GRND_SEED to obtain data from entropy sources directly
● All other APIs deliver data without blocking until complete initialization

– No guarantee of ESDM being fully initialized / seeded

 7

DRNG Seeding
● Temporary seed buffer:

concatenation of output from all ES
● Seeding during initialization: when

256 bits of entropy are available
● Seeding at runtime

– After 220 generate requests or 10 minutes
– After forced reseed by user space
– After new DRNG is loaded
– At least 128 bits (SP800-90C mode: ESDM security strength) of total entropy must be available
– 256 bits of entropy requested from each ES – ES may deliver less
– Seed operation occurs when DRNG is requested to produce random bits
– DRNG returns to not fully seeded when last seed with full entropy was > 230 generate operations ago

 8

Initial Seeding Strategy I
Default Operation
● DRNG is fully seeded with 256 bits of entropy
● Blocking interfaces released after DRNG is fully seeded

– After 5 requests received, forced seeding with available
entropy to achieve fully seeded level

● Default applied
– Either no specific seeding strategy compiled
– Or specific seeding strategy is not enabled at start time

 9

Initial Seeding Strategy II
Entropy Source Oversampling
● Fully seeded step changed
● Compile time option

– Function only enabled in FIPS mode
– Function only enabled if message digest of conditioner >= 384 bits

● Initial conditioning: s + 64 bit
● Initial DRNG seeding: every entropy source requested for s +

128 bits
– Every ES alone could provide all required entropy

● All ES data concatenated into seed buffer
● Runtime debug mode: display of all processing steps
● SP800-90C compliance:

– SP800-90A DRBG with 256-bit strength / SHA-512 vetted
conditioning component

– Complies with RBG2(NP) per default
– Can be configured to provide RBG2(P)

● Can be used in parallel with seeding strategy III

 10

Initial Seeding Strategy III
Two Entropy Sources
● Initial / minimal seeding steps apply unaltered – fully

seeded step changed
● Compile time option

– Function only enabled with compile option “ais2031”
● Initial DRNG seeding: two entropy sources

must deliver 220 bits of entropy each
● All ES data concatenated into seed buffer
● Runtime debug mode: display of all

processing steps
● German AIS 20/31 compliance

– Caveat: Applies to draft version of AIS20/31 as of September 2022
– NTG.1: LRNG configuration ensures two entropy sources can reach at least 220 bits each
– PTG.3 / DRG.4: LRNG can be configured to provide a PTG.3 or DRG.4

● Can be used in parallel with seeding strategy II

 11

DRNG Management
● One DRNG per CPU up to maximum of 64
● Hash contexts on stack only
● Each DRNG initializes from entropy sources
● Sequential initialization of DRNG – first is CPU 0
● If one DRNG node is not yet fully seeded → use of

DRNG(Node 0)
● Each DRNG instance managed independently
● To prevent reseed storm – reseed threshold different

for each node
– Node 0: 600 seconds
– Node 1: 700 seconds
– …

● Maximum node number is compile time option

DRNG
Node 0

DRNG
Node 1

DRNG
Node 2

 12

Data Processing Primitives
● Sole use of cryptographic mechanisms for data

compression
● Cryptographic primitives compile-time switchable

– DRNG, Conditioning hash
– Built-in: SP800-90A Hash DRBG SHA2-512 / SHA2-512
– Available Crypto-providers: OpenSSL, Botan, leancrypto

● Complete built-in cryptographic primitive testing available
– Full ACVP test harness available: https://github.com/smuellerDD/acvpparser
– ChaCha20 DRNG userspace implementation: https://github.com/smuellerDD/leancrypto

● Other data processing primitives
– Concatenation of data
– Truncation of message digest to heuristic entropy value

● Entropy behavior of all data processing primitives based on fully understood and uncontended
operations

https://github.com/smuellerDD/acvpparser
https://github.com/smuellerDD/leancrypto

 13

External Entropy Sources
● Use without additional conditioning – fast source

– Jitter RNG
– Kernel RNG
– CPU (e.g. Intel RDSEED, POWER DARN, RISC-V CSRRW,

IBM Z PRNO)
● Proper oversampling as defined by specification

– Data immediately available when ESDM requests it
● Additional conditioning – slow source

– RNGDs
– Arbitrary writers to /dev/random
– All received data added to “auxiliary pool“ with hash update operation
– Data “trickles in” over time

● Every entropy source has individual entropy estimate
– Taken at face value – each ES requires its own entropy assessment

User Space
Writes
IOCTLHash Init

Hash Update

Hash Update

Hash Update

Hash Final

Hash Init

Hash Update

ESDM lib start

...

User Space
Writes
IOCTL

Auxiliary Pool

User Space
Writes
IOCTL

 14

Internal ES:
Interrupts
● Interrupt timing

– All interrupts are treated as one entropy
source

● Data collection executed in IRQ context
● Data compression executed partially in IRQ

and process context
● Data compression is a hash update operation
● High performance: up to twice as fast as legacy /dev/random in IRQ context with continuous

enabled
– Even faster without continuous compression

● Kernel RNG lost acces to its primary IRQ ES→ ESDM reseeds kernel RNG periodically
● Requires small kernel patch + kernel module

– Code present in ESDM source tree

 15

Internal ES: IRQ
Data Processing
● 8 LSB of time stamp divided by

GCD concatenated into per-CPU
collection pool
– Entropy estimate
– Health test

● 32 bits of other event data concatenated into per-CPU
collection pool

● When array full → conditioned into per-CPU entropy pool
– When entropy is required → conditioning of all entropy pools into

one message digest
– Addition of all per-CPU entropy estimates

Entropy Estim.Entropy Estim.

IRQ

... CPU 0 Collection Pool

Other
Event Data/ GCD & 0xFF

Health TestHealth Test

Hash

64-bit
Cycle
Count

...

CPU 0
Entropy Pool

Hash Interrupt ES
Seed DataHash

CPU 1
Entropy Pool

Hash
CPU N

Entropy Pool

...

IRQ Context CPU 0

Process Contextif LRNG_CONTINUOUS_COMPRESSION_ENABLED
 IRQ Context
else
 Process Context

32-bit

Hash Init

Hash Update

Hash Update

Hash Update

Hash Final

Hash Init Digest CPU0

Hash Update

Kernel Start

...

...

...

...

Filled Collection Pool Instances

CPU 0

Entropy Pool

Digest CPUn

Digest CPU1 CPU 1

CPU n

 16

Internal ES:
Scheduler Events
● Scheduler-based context switch timing

– All context switches are treated as one entropy
source

● Data collection executed in scheduler context
– Collection: adding data into collection array → high-performance (couple of cycles)

● Data compression executed in process context during reseeding of DRNG
● Data compression is a hash operation
● Requires small kernel patch + kernel module

– Code present in ESDM source tree

 17

Internal ES: Scheduler
Data Processing
● 8 LSB of time stamp divided by

GCD concatenated into per-CPU
collection pool
– Entropy estimate
– Health test

● When array full → overwriting of oldest value
● When entropy is required → conditioning of all

entropy pools into
one message digest
– Addition of all per-CPU entropy estimates

Entropy Estim.

Context
Switch

... CPU 0 Collection Pool

/ GCD & 0xFF

Health Test

64-bit
Cycle
Count

...

Hash

Scheduler ES
Seed Data

...

Scheduler Execution CPU 0

Process Context

...CPU 1 Collection Pool

...CPU 2 Collection Pool

...CPU N Collection Pool

Scheduler Execution CPU x

Hash

Hash

Hash

Hash

Hash Init

Hash Update

Hash Final

Hash Init Digest CPU0

Hash Update

Kernel Start

...
Filled Collection Pool Instance

CPU 0

Entropy Pool

Digest CPUn

Digest CPU1 CPU 1

CPU n

 18

Internal ES Testing
Interfaces
● Testing code is compile time option
● Access via DebugFS
● Testing supports data collection at boot time and runtime:

– Raw unprocessed entropy time stamps for Scheduler / IRQ ES
– Performance data for ESDM’s Scheduler handler
– Performance data for ESDM’s IRQ handler

● Scheduler ES: Full SP800-90B assessment
documentation yet pending

● IRQ ES: Full SP800-90B assessment available
● Raw entropy collection and analysis tools

provided

 19

Internal ES Health Test
● Health test compile-time configurable
● Power-Up self tests

– All cryptographic mechanisms
– Time stamp management

● APT / RCT
● Time-Stamp Pattern detection: 1st/2nd/3rd

discrete derivative of time ≠ 0
● Blocking interface: Wait until APT power-up

testing complete
● Provides SP800-90B compliance of internal ES

 20

General Testing
● Automated regression test suite covering the different

options of ESDM
– Meson test harness

● Applied testing frameworks
– ASAN: address, thread, undefined
– Valgrind memory leak detector
– clang-scan

● Performance tests of DRNG
● Interface validation testing
● Compile test testing all options

 21

ESDM - Resources
● Code / Tests / Documentation:

https://github.com/smuellerDD/esdm
● Testing conducted with

– FIPS mode
– Without FIPS mode
– With SELinux enabled
– Without SELinux
– Production use

https://github.com/smuellerDD/esdm

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21

