
Entropy Source and DRNG Manager
Stephan Müller <smueller@chronox.de>

February 7, 2024

Abstract
Almost all parts of cryptography rest on a random number generator

which produces data that are indistinguishable from a perfect generator.
This also implies that the random number generator is seeded with suf-
ficient entropy and the entropy is maintained during processing. Also a
reseed at proper intervals is important to maintain the security strength.
Finally, different users and use cases have different requirements regarding
seeding and the deterministic processing. All these tasks are non-trivial
in nature. The Entropy Source and DRNG Manager (ESDM) provides
a flexible and extensible framework. The ESDM also provides a set of
well-known interfaces: an API and ABI compliant drop-in replacement
for Linux /dev/random, /dev/urandom and getrandom(2) system call.

Contents
1 Introduction 4

1.1 Properties Offered by the ESDM 5
1.2 Document Structure . 7

2 ESDM Design 8
2.1 ESDM Components . 11
2.2 ESDM Data Processing . 13

2.2.1 Scheduler and Interrupt Entropy Sources 13
2.2.2 Interrupt Entropy Source 14
2.2.3 Scheduler Entropy Source 15
2.2.4 Auxiliary Entropy Pool 16
2.2.5 CPU Entropy Source . 16
2.2.6 Temporary Seed Buffer Construction 16

2.3 ESDM Architecture . 17
2.3.1 Minimally Versus Fully Seeded Level 18
2.3.2 NUMA Systems . 19
2.3.3 Flexible Design . 19

2.4 ESDM Data Structures . 20
2.5 Interrupt Processing - ESDM-internal Entropy Source 20

2.5.1 Entropy Amount of Scheduling Events 23
2.5.2 Health Tests . 23

2.6 Scheduler Events - ESDM-internal Entropy Source 23
2.6.1 Entropy Amount of Interrupts 24
2.6.2 Health Tests . 25

1

2.7 Auxiliary Entropy Pool - ESDM-external Entropy Sources 28
2.7.1 Injecting Data From User Space 28
2.7.2 Auxiliary Pool . 28

2.8 Jitter RNG - ESDM-external Entropy Source 29
2.8.1 Entropy of CPU Jitter RNG Entropy Source 29

2.9 CPU-base Entropy Source - ESDM-external Entropy Source . . . 29
2.9.1 Entropy of CPU Entropy Source 30

2.10 Kernel RNG Entropy Source - ESDM-external Entropy Source . 30
2.10.1 Entropy of Kernel RNG Entropy Source 30

2.11 DRNG Seeding Operation . 31
2.11.1 DRNG May Become Not Fully Seeded 32

2.12 Cryptographic Primitives Used By ESDM 32
2.12.1 DRBG . 32
2.12.2 ChaCha20 DRNG . 33

2.13 ESDM External Interfaces . 35
2.14 ESDM Self-Tests . 35
2.15 ESDM Test Interfaces . 35

3 Interrupt Entropy Source Assessment 38
3.1 Noise Source Behavior . 38

3.1.1 Distribution of Raw Data 39
3.1.2 Greatest Common Divisor Assessment 44
3.1.3 Worst and Regular Case Distribution 46

3.2 FIPS 140-2 Compliance . 46
3.2.1 FIPS 140-2 IG 7.18 Requirement For Statistical Testing . 47
3.2.2 FIPS 140-2 IG 7.18 Heuristic Analysis 47
3.2.3 FIPS 140-2 IG 7.18 Additional Comment 1 47
3.2.4 FIPS 140-2 IG 7.18 Additional Comment 2 47
3.2.5 FIPS 140-2 IG 7.18 Additional Comment 3 48
3.2.6 FIPS 140-2 IG 7.18 Additional Comment 4 48
3.2.7 FIPS 140-2 IG 7.18 Additional Comment 6 48
3.2.8 FIPS 140-2 IG 7.18 Additional Comment 9 49

3.3 SP800-90B Compliance . 49
3.3.1 SP800-90B Section 3.1.1 49
3.3.2 SP800-90B Section 3.1.2 49
3.3.3 SP800-90B Section 3.1.3 49
3.3.4 SP800-90B Section 3.1.4 49
3.3.5 SP800-90B Section 3.1.5 50
3.3.6 SP800-90B Section 3.1.5.1 53
3.3.7 SP800-90B Section 3.1.6 58
3.3.8 SP800-90B Section 3.2.1 Requirement 1 58
3.3.9 SP800-90B Section 3.2.1 Requirement 2 58
3.3.10 SP800-90B Section 3.2.1 Requirement 3 59
3.3.11 SP800-90B Section 3.2.1 Requirement 4 59
3.3.12 SP800-90B Section 3.2.1 Requirement 5 59
3.3.13 SP800-90B Section 3.2.1 Requirement 6 59
3.3.14 SP800-90B Section 3.2.1 Requirement 7 59
3.3.15 SP800-90B Section 3.2.2 Requirement 1 60
3.3.16 SP800-90B Section 3.2.2 Requirement 2 60
3.3.17 SP800-90B Section 3.2.2 Requirement 3 60

2

3.3.18 SP800-90B Section 3.2.2 Requirement 4 60
3.3.19 SP800-90B Section 3.2.2 Requirement 5 60
3.3.20 SP800-90B Section 3.2.2 Requirement 6 60
3.3.21 SP800-90B Section 3.2.2 Requirement 7 60
3.3.22 SP800-90B Section 3.2.3 Requirement 1 61
3.3.23 SP800-90B Section 3.2.3 Requirement 2 61
3.3.24 SP800-90B Section 3.2.3 Requirement 3 61
3.3.25 SP800-90B Section 3.2.3 Requirement 4 61
3.3.26 SP800-90B Section 3.2.3 Requirement 5 61
3.3.27 SP800-90B Section 3.2.4 Requirement 1 61
3.3.28 SP800-90B Section 3.2.4 Requirement 2 61
3.3.29 SP800-90B Section 3.2.4 Requirement 3 61
3.3.30 SP800-90B Section 3.2.4 Requirement 4 61
3.3.31 SP800-90B Section 3.2.4 Requirement 5 61
3.3.32 SP800-90B Section 3.2.4 Requirement 6 62
3.3.33 SP800-90B Section 3.2.4 Requirement 7 62
3.3.34 SP800-90B Section 4.3 Requirement 1 62
3.3.35 SP800-90B Section 4.3 Requirement 2 62
3.3.36 SP800-90B Section 4.3 Requirement 3 62
3.3.37 SP800-90B Section 4.3 Requirement 4 62
3.3.38 SP800-90B Section 4.3 Requirement 5 62
3.3.39 SP800-90B Section 4.3 Requirement 6 63
3.3.40 SP800-90B Section 4.3 Requirement 7 63
3.3.41 SP800-90B Section 4.3 Requirement 8 63
3.3.42 SP800-90B Section 4.3 Requirement 9 63
3.3.43 SP800-90B Section 4.4 . 63

3.4 NIST Clarification Requests . 64
3.4.1 Sensitivity of Interrupt Timing Measurements 64
3.4.2 Dependency Between Interrupt Timing Measurements . . 64

3.5 SP800-90B Compliant Configuration 65
3.6 Reuse of SP800-90B Analysis . 66

4 Scheduler Entropy Source Assessment 66

5 ESDM Specific Configurations 66
5.1 SP800-90C Compliance . 66

5.1.1 RBG2(P) Construction Method 69
5.1.2 SP800-90C Compliant Configuration 70
5.1.3 FIPS 140 Compliant Configuration 72

5.2 AIS 20 / 31 . 72
5.2.1 NTG.1 (AIS 20/31 2011) Compliant Configuration 73
5.2.2 NTG.1 (AIS 20/31 2022) Compliant Configuration 73
5.2.3 DRG.4 / PTG.3 Compliant Configuration 74

A Thanks 75

B Source Code Availability 75

C SP800-90B Entropy Measurements 75

D Auxiliary Testing 77

3

E Bibliographic Reference 77

F License 77

G Change Log 78

List of Figures
2.1 ESDM Big Picture . 8
2.2 ESDM Interfaces To Obtain Random Numbers 9
2.3 DRNG Instances on NUMA systems with seeding strategy 19
2.4 Interrupt Processing . 21
2.5 Collection Pool Processing . 22
2.6 Scheduler-event Processing . 23
2.7 Scheduler per-CPU Entropy Pool Management 24
2.8 Auxiliary Pool Processing . 29
2.9 ChaCha20 DRNG Operation . 34
3.1 RISC-V Raw Noise Source Data Distribution 39
3.2 USB Armory Mark II: Raw Noise Source Data 42
3.3 Periodic timer interrupt: Specific ARMv7 System Raw Noise

Source Data . 43
3.4 IBM System Z Raw Noise Source Data 44
3.5 Without GCD - Raw Noise Source Data Distribution 44
3.6 With GCD - Raw Noise Source Data Distribution 45

List of Tables
3 ESDM Entropy Testing Results on Different Hardware 76

1 Introduction
The ESDM originated from the Linux Random Number Generator (LRNG)
patch series. Considering the limitations of maintaining a proper entropy source
management inside the confinements of a kernel and the fact that such actions
do not need the privileges of executing inside the kernel, the LRNG patch series
was converted into user space to form the ESDM. Even in user space, the ESDM
can execute completely unprivileged and thus adds to the overall system security
to isolate the operation.

Before discussing the design of the ESDM, the goals of the ESDM design
are enumerated:

1. The ESDM manages the proper seeding and reseeding of DRNGs. In ad-
dition, it provides internal entropy sources which the ESDM fully controls
as well as interfaces to obtain data from external entropy sources.

2. The ESDM provides a full API and ABI drop-in replacement for the Linux
device files of /dev/random and /dev/urandom as well as the Linux ge-
trandom(2) system call and the getentropy(3) library calls. All code re-

4

https://www.chronox.de/lrng

lated to these interfaces is solely implemented in user space and executed
with limited or no privileges.

3. The ESDM is modular consisting of a central server which is implemented
with minimal dependencies. This allows the ESDM to execute on different
operating systems. The aforementioned Linux interfaces are implemented
with separate processes and libraries and therefore their absence do not
affect the ESDM operation on operating systems other than Linux.

4. All user-visible behavior implemented by the kernel /dev/random – such
as the per-NUMA-node DRNG / per-CPU instances are provided by the
ESDM as well.

5. The ESDM must not use locking in hot code paths to limit the impact on
massively parallel systems.

6. The ESDM must handle modern computing environments without a degra-
dation of entropy. The ESDM therefore must work in virtualized environ-
ments, with SSDs, on systems without HIDs or block devices and so forth.

7. The ESDM must provide a design that allows quantitative testing of the
entropy behavior.

8. The ESDM must use testable and widely accepted cryptography for con-
ditioning.

9. The ESDM must allow the use of cipher implementations backed by archi-
tecture specific optimized assembler code or even hardware accelerators.
This provides the potential for lowering the CPU costs when generating
random numbers – less power is required for the operation and battery
time is conserved.

10. The ESDM must separate the cryptographic processing from the entropy
source maintenance to allow a replacement of these components.

11. The ESDM shall offer flexible configurations allowing vendors to apply the
settings applicable to their environment.

1.1 Properties Offered by the ESDM
Apart from the fact that a user does not need to manage the DRNG and its
seeding status, the ESDM provides the following properties making the ESDM a
contemporary and future-proof entropy source and DRNG management frame-
work:

• Pure user space implementation:

– The entire ESDM as well as the Linux interfaces are fully imple-
mented in user space.

– Two additional but optional entropy sources are provided for resource-
constrained systems: the scheduler-based entropy source and the
interrupt-based entropy source. Both, however, uses a kernel ex-
tension as it hooks into the scheduler / the interrupt handling code
path.

5

– The ESDM server executes without any privilege. The Linux in-
terfaces providing /dev/random, /dev/urandom and the associated
proc files execute with limited privileges.

• Sole use of crypto for data processing:

– Exclusive use of a hash operation for conditioning entropy data with a
clear mathematical description as given section 2.2 – non-cryptographic
operations like LFSR are not used.

– The ESDM uses only properly defined and implemented cryptographic
algorithms unlike the use of the SHA-1 transformation in the Linux
kernel /dev/random implementation that is not compliant with SHA-
1 as defined in FIPS 180-4.

– Hash operations use on-stack hash instances to benefit large parallel
systems.

– ESDM uses limited number of data post-processing steps as doc-
umented in section 2.2 compared to the large variation of differ-
ent post-processing steps in the legacy /dev/random implementation
that have no apparent mathematical description.

• Performance

– High-performance implementation of scheduler entropy source requir-
ing only a few cycles to collect entropy.

– High-performance implementation of interrupt entropy source requir-
ing only a few cycles to collect entropy which is significantly faster
than the existing kernel interrupt handler.

• Testing

– Availability of run-time health tests of the raw unconditioned en-
tropy source data of the scheduler-based entropy source to identify
degradation of the available entropy. Such health tests are important
today due to virtual machine monitors reducing the resolution of or
disabling the high-resolution timer.

– Heuristic entropy estimation for the scheduler-based entropy source
is based on quantitative measurements and analysis following SP800-
90B.

– Power-on self tests for critical deterministic components (DRNG,
hash implementation, and entropy collection logic).

– Availability of test interfaces for all operational stages of the ESDM
including boot-time raw entropy event data sampling as outlined in
section 2.15.

– The ESDM offers a test interface to validate the used software hash
implementation and in particular that the ESDM invokes the hash
correctly, allowing a NIST ACVP-compliant test cycle – see sec-
tion 2.15.

– Availability of stress testing covering the different code paths for data
and mechanism (de)allocations and code paths covered with locks.

6

https://github.com/smuellerDD/lrng/blob/master/test/swap_stress.sh

– Availability of fully automated regression testing covering different
ESDM functions in different configurations allow an unattended func-
tional verification testing.

• Entropy collection of the internal interrupt and scheduler-based entropy
source

– The ESDM scheduler-based and interrupt-based entropy sources are
fully compliant to SP800-90B requirements and are shipped with a
full SP800-90B assessment and all required test tools.

– Full entropy assessment and description is provided with chapter 3,
specifically section 3.3.6.

– The ESDM provides a configuration to be compliant to SP800-90C
following RBG2(NP) as well as RBG2(P) construction methods.

– The ESDM provides an interface allowing the request of random num-
bers with prediction resistance, i.e. requiring an immediate reseed
and only returning as many bits of data as entropy was available.
This shall support chaining of DRBGs compliant to SP800-90C.

– The ESDM provides a configuration to be compliant to the German
AIS 20/31 NTG.1 considering the aforementioned prediction resis-
tance interface.

• Configurable

– ESDM build-time configuration allows a flexible adoption of the ESDM
to different use cases. Non-compiled additional code is folded into no-
ops.

– Configurable seeding strategies are provided following different con-
cepts.

1.2 Document Structure
This paper covers the following topics in the subsequent chapters:

• The design of the ESDM is documented in chapter 2. The design discus-
sion references to the actual implementation whose source code is publicly
available.

• The statistical testing of the internal interrupt entropy source including
the SP800-90B compliance assessment is provided in chapter 3.

• The statistical testing of the internal scheduler entropy source including
the SP800-90B compliance assessment is provided in chapter 4.

• The discussion of various configurations offered by the ESDM is given in
chapter 5.

• The various appendices cover miscellaneous topics supporting the general
description.

7

https://github.com/smuellerDD/lrng/blob/master/test/automation
https://www.chronox.de/lrng

2 ESDM Design
The ESDM can be characterized with figure 2.1 which provides a big picture of
the ESDM processing and components.

HashHash

Entropy Estim.Entropy Estim.
IRQ Noise

CPU RNG
ES

...

User Space
Writes
IOCTL

Collection Pool

CPU ESIRQ ES

Temorary
Seed Buffer

Generate

DRNG

(Re)Seeding

Other
Event Data

Event Value

HashHash

TimeCPU Jitter ES

CPU Jitter
ES

Health TestHealth Test

Aux Pool ES

...

per-CPU pools

Scheduler ES

Scheduler
Noise

...
Collection Pool

HashHash

Kernel
RNG ES

Kernel RNG ES

per-CPU pools

HW-Rand
ES

HW-RAND ES

Figure 2.1: ESDM Big Picture

The colors indicate the different entropy sources managed by the ESDM.
The ESDM introduces the concept of slow and fast entropy sources. Fast

entropy sources provide entropy at the time of request. A slow entropy source
collects data over time into an entropy pool.

The entropy source that is under full control of the ESDM, also called the
internal entropy source, comprises of the:

• The indigo marked parts refer to the scheduler entropy source that feeds
per-CPU collection pools. These collection pools are hashed into per-CPU
entropy pools when seeding of the DRNG is to be performed.

• The orange marked parts refer to the interrupt entropy source which has a
very similar architecture compared to the scheduler-based entropy source:
data is fed in per-CPU collection pools to hash them into per-CPU entropy
pools.

The following external entropy sources are present. These entropy sources are
expected to be fully self-contained. The ESDM only requests data from them
and expects that the entropy estimate provided with the data is correct:

8

• The auxiliary pool collects data from external entropy sources which de-
liver data at times not controllable by the ESDM.

• The CPU entropy source obtains data from a potentially existing source
in the CPU like RDSEED on Intel CPUs.

• The Jitter RNG entropy source is another external entropy source.

• The random number generator provided with the getrandom system call
or the /dev/random device file can be enabled at compile time to serve as
an entropy source.

• Using the Linux hardware random number generator (/dev/hwrng) as seed
source that may obtain data from various hardware sources including TPM
v2.0.

The ESDM treats all external and internal entropy sources equally. It can handle
the situations where one or more entropy sources returns little or no entropy.

The the scheduler entropy source is assessed in chapter 4 which provides its
complete entropy assessment. All other entropy sources are expected to pro-
vide their own entropy assessment supporting the claim of the supplied entropy
that is credited by the ESDM for these sources. The ESDM treats these addi-
tional entropy sources as black boxes and take their claimed entropy rate at face
value. The ESDM, however, guarantees that all entropy sources are processed
in compliance with defined standards.

The different colors used in figure 2.1 depict the different entropy sources
mentioned before.

The ESDM offers various interfaces to obtain random numbers as depicted
in figure 2.2.

/dev/random

/dev/urandom

getentropy

Generate

DRNG

(Re)Seeding

getrandom

/var/run/esdm-*

ESDM library

ESDM RPC library

Linux RNG
Interfaces

Additional
Interfaces

getrandom
(GRND_SEED)

Figure 2.2: ESDM Interfaces To Obtain Random Numbers

Based on this figure, the following types of interfaces are available which are
marked with the different colors in figure 2.2. Each type of interface can be
selectively enabled and disabled at compile time:

• Linux RNG interfaces: The common interfaces found from today’s Linux
kernels include /dev/random, /dev/urandom, the getrandom system call

9

or the getentropy C-library wrapper. These interfaces behave identically
to the Linux RNG and thus allow the ESDM to act as a drop-in replace-
ment. When not compiling those, the ESDM can be operated in parallel
with the Linux RNG and all user space software divert to use the ESDM.

• The ESDM also exports a set of Unix Domain Sockets to /var/run which
can be used directly, albeit it is not advised to be used as the protocol
offered by those sockets is defined to be not stable, i.e. it can change from
one version to another.

• To wrap the mentioned Unix Domain Sockets, the ESDM RPC library is
available which offers a stable API.

• The ESDM library provides the heart of the ESDM functionality. It could
be directly used by a calling application. Yet, it is advised to use the
RPC interface as it is provided by a daemon that uses the ESDM library
already.

The ESDM consists of the following components:

• libesdm.so: The ESDM provides a library with the core of the ESDM.
The DRNG and entropy source managers together with all entropy sources
and cryptograpphic algorithm implementations are implemented with this
library. This library is wrapped by the esdm-server listed below. The
API for using the library is exported by and documented with esdm.h.
The library is provided in case a user wants to employ the ESDM in his
projects instead of the esdm-server. Yet, the esdm-server provides a
wrapping daemon to the ESDM library that is intended to be commonly
used.
In addition, the ESDM can be configured with the options specified in
esdm_config.h. This would need to be performed by the consuming
application. When using the tools below, this library can be ignored.

• esdm-server: The ESDM server provides the RPC server that encap-
sulates the ESDM with its random number generator and the entropy
source management. When starting the server, the mentioned Unix Do-
main Sockets are created that allows clients to request services including
random numbers.
The ESDM server can either be started manually or with the provided
(and installed) systemd unit file. When using systemd, start the server
with ‘systemctl start esdm-server‘.
A wrapper library to access the ESDM server RPC interface is provided
with libesdm_rpc_client.so. Its API is specified and documented with
esdm_rpc_client.h.
The esdm-server is the backend to all of the following ESDM components.
Note: The Unix domain sockets of the esdm-server are only visible in
the respective mount namespace. If you have multiple mount namespaces,
you need to start the daemon in each mount namespace or make the files
otherwise available if its services shall be available there.

10

• esdm-cuse-random: The ESDM CUSE daemon creates a device file that
behaves identically to /dev/random. It must be started as root. Reading,
writing and IOCTLs are implemented in an ABI-compatible way.
The ESDM CUSE daemon can either be started manually or with the
provided (and installed) systemd unit file. When using systemd, start the
server with ‘systemctl start esdm-cuse-random‘. Although the daemon
creates a /dev/random device, the actual visible operation is atomic (a
bind mount) for both creation and destruction of the new device file which
implies that the daemon can be started and stopped at any time during
runtime of the Linux OS.
Note: The bind mount is only visible in the respective mount namespace.
If you have multiple mount namespaces, you need to start these daemons
in each mount namespace or make the files otherwise available if their
services shall be available there.

• esdm-cuse-urandom: Same as esdm-cuse-random but behaving like /dev/urandom.

• esdm-proc: This FUSE file system implements all files found on a Linux
system under /proc/sys/kernel/random but pointing to the ESDM server.
This process is required to ensure that all interfaces are provided by
ESDM. For details about the provided files, see the random(4) man page.
Note, the kernel exports the /proc/sys/kernel/random information also as
sysctl(8). This interface is not covered by ‘esdm-proc‘.

• libesdm-getrandom.so: The library provides a wrapper to the getrandom
and getentropy Linux C-library calls. To use the library for other con-
sumers, use one of the following considerations:

– Use LD_PRELOAD="/path/to/libesdm-getentropy.so" with the in-
tended application.

– Compile the application or library with the following options:
≻ LDFLAGS += -Wl,--wrap=getrandom,--wrap=getentropy
≻ LDFLAGS += -lesdm-getrandom

2.1 ESDM Components
The ESDM consists of the following components shown in figure 2.1:

1. The ESDM implements a DRNG. Unless using the interface providing
prediction resistance, the DRNG always generates the requested amount
of output. When using the SP800-90A terminology it operates without
prediction resistance. The DRNG maintains a counter of how many bytes
were generated since last re-seed and a timer of the elapsed time since last
re-seed. If either the counter or the timer reaches a threshold, the DRNG
is seeded from the entropy sources with the available entropy.
In case the Linux kernel detects a NUMA system, one DRNG instance per
NUMA node is maintained.
Depending on the used interface to request data from the DRNG, the
caller may be put to sleep until the ESDM is fully seeded:

11

(a) All interfaces using the esdm_get_entropy_bytes function always
generates data including when the ESDM is not properly seeded.

(b) All interfaces using the esdm_get_entropy_bytes_full function gen-
erate data only when the ESDM is fully seeded and fully initialized.

(c) When using the esdm_get_entropy_bytes_pr function, the special
DRNG instance which operates with prediction resistance is used
such that it is reseeded from the entropy sources and generates at
most as much data as entropy was added. This implies the DRNG
operates with prediction-resistance (SP800-90A terminology) or is
NTG.1 compliant (German BSI AIS 20/31 from 2011). In addition,
when the ESDM executes in FIPS mode, the behavior complies with
all FIPS requirements allowing the output of the API to be claimed to
be from a vetted conditioning component. I.e. the caller may safely
use this data to seed another DRBG. To achieve this, the following
checks are applied in the function esdm_drng_get:

• Require a reseed - in FIPS mode, the ESDM requires the avail-
ability of at least 256 bits of entropy in its entropy sources for
the reseed to commence.

• Produce at most only 256 bits of random bits from the DRNG
(i.e. the security strength of the DRNG).

2. The DRNG is seeded by concatenating the data from the following sources
in case they are enabled at compile time:

(a) the output of the auxiliary pool,
(b) the output of the per-CPU interrupt entropy pools,
(c) the output of the per-CPU scheduler entropy pools,
(d) the Jitter RNG if available,
(e) the CPU-based entropy source such as Intel RDSEED if available,
(f) the kernel RNG output, and
(g) the Linux kernel HWRAND framework (/dev/hwrng).

The entropy estimate of the data of all entropy sources are added to form
the entropy estimate of the data used to seed the DRNG with. The ESDM
ensures, however, that the DRNG after seeding is at maximum the security
strength of the used DRNG implementation of 256 bits.
The ESDM is designed such that none of these entropy sources can domi-
nate the other entropy sources to provide seed data to the DRNG due to
the following:

(a) During boot time, the amount of available entropy is the trigger point
to (re)seed the DRNG following the explanation in the next section.

(b) At runtime, the the DRNG reseed is triggered by either the DRNG
due to hitting the aforementioned thresholds or by a user space caller.
The reseed is never triggered by the entropy sources.

3. To support backward secrecy, the following steps are applied:

12

(a) The temporary seed buffer holding the concatenation of data from
all entropy sources to seed the DRNG is injected into the auxiliary
pool like other data by hashing it together with the existing auxiliary
pool data to form the new auxiliary pool content. The injection of
the temporary seed buffer will not alter the entropy estimation of the
auxiliary pool.

(b) The message digest created for each per-CPU entropy pool of the
scheduler and interrupt entropy sources is inserted into the corre-
sponding per-CPU entropy pool.

The ESDM allows the DRNG mechanism and the used hash to be changed at
compile time. Per default, an SP800-90A Hash DRBG implementation along
with a SHA-512 hash implementation is available. Both are standard C imple-
mentations which were tested against NIST’s ACVP service.

The following subsections cover the different components of the ESDM from
the bottom to the top.

2.2 ESDM Data Processing
The processing of entropic data from the different entropy source before injecting
them into the DRNG is performed with the following mathematical operations.
The operation SHA() refers to the hash operation using the message digest
implementation that is currently present, i.e. SHA-512.

2.2.1 Scheduler and Interrupt Entropy Sources

1. Truncation: The time stamps received by the IRQ as well as the sched-
uler entropy sources are truncated to 8 least significant bits (or 32 least
significant bits during boot time) – note the GCD is a value calculated
during initialization and is fixed thereafter which implies that the time
stamp divided by the GCD is the raw entropy value: t8 (or t32)

2. Concatenation: The time stamps received and truncated by the IRQ and
scheduler entropy sources as well as auxiliary 32 bit words a32 are con-
catenated to fill the per-CPU collection pool that is capable of holding
1,024 8-bit words1 - the order of the data a32 or t8 present in the concate-
nation depends on the occurrence of events - the following formula depicts
one possible order for illustration - the implementation is provided with
functions _esdm_pcpu_array_add_u32 and esdm_pcpu_array_add_slot:

CP = t8n−1019 ||a32n
||t8n−1018 || ... ||t8n

(2.1)

Note: In case the continuous compression operation is disabled for the
IRQ entropy source, the auxiliary 32 bit words a32 are discarded and are
not injected into the collection pool. This approach is taken to prevent
non-entropy data to potentially overwrite entropy data in the collection
pool when the array wraps. The scheduler entropy source only records
time stamps.

1The ESDM collection size is compile-time configurable where 1,024 is a default value.
When configuring a different value, the number of the concatenated data must be adjusted as
needed. However, this modification has no impact to the illustration of the data processing.

13

2.2.2 Interrupt Entropy Source

1. Hashing: For the IRQ entropy source all concatenated time stamp data
received from the interrupts since the last output generation of the per-
CPU entropy pool EPCP Un−1 are hashed together with that last output
EPCP Un−1 to generate new per-CPU entropy pool output of EPCP Un

.
The following steps are performed:

(a) One filled per-CPU collection pool for the interrupt entropy source
CPIRQm

is inserted into the per-CPU entropy pool using a hash
update operation.

(b) To generate data from the entropy pool EPCP Un as used by func-
tion 2.3, a hash final operation is performed.

(c) Once a hash final operation is performed it is followed by an immedi-
ate re-initialization of the hash state with a hash init operation and
adding the just calculated message digest with the first hash update.

The implementation is provided with function esdm_pcpu_array_compress
together with the function esdm_pcpu_pool_hash_one generating data
from the per-CPU entropy pool:

EPCP Un = SHA(EPCP Un−1 ||CPIRQm−(n−1) ||...||CPIRQm−1 ||CPIRQm)
(2.2)

Note: The hash update operation is performed at the following occasions:

(a) Continuous compression enabled: The hash update is performed ev-
ery time the collection pool is full. This operation therefore is per-
formed in interrupt context. In addition, the operation is performed
at the time operation of equation 2.3 is invoked which is in process
context.

(b) Continuous compression enabled and disabled: The hash update is
performed at the time the operation of equation 2.3 is invoked, i.e.
at the time the DRNG is reseeded. This operation therefore is per-
formed in process context. This guarantees that all unprocessed en-
tropy data in the collection pool is added to the entropy pool at the
time the entropy pool is requested for random data.

This implies that in case of disabled continuous compression, the oldest
entries in the collection pool are overwritten with newer entropy event data
when more entropy events are collected than can be held in the collection
pool between DRNG reseeds.

2. Hashing: For the IRQ entropy source, a message digest of all per-CPU
entropy pools is calculated. This message digest is used to fill the in-
terrupt entropy source output buffer S discussed in the following - the
implementation is provided with function esdm_pcpu_pool_hash:

EPalln
= SHA(EPCP U0n

||EPCP U1n
|| ... ||EPCP UXn

) (2.3)

3. Truncation: For the interrupt entropy pool, the most-significant bits (MSB)
defined by the requested number of bits (commonly equal to the secu-
rity strength of the DRBG) or the entropy available transported with the

14

buffer (which is the minimum of the message digest size and the available
entropy in all entropy pools), whatever is smaller, are obtained from the
interrupt entropy source output buffer S - the implementation is provided
with function ESDM_pcpu_pool_hash:

En = MSBmin(entropy,security strength)(EPalln
) (2.4)

2.2.3 Scheduler Entropy Source

1. Hashing: For the scheduler-based entropy source, all concatenated time
stamp data received from the interrupts since the last output generation
of the per-CPU entropy pool SPCP Un−1 are hashed together with that
last output SPCP Un−1 to generate new per-CPU entropy pool output of
SPCP Un

. The following steps are performed:

(a) One filled per-CPU collection pool for the interrupt entropy source
CPSCHEDm is inserted into the per-CPU entropy pool using a hash
update operation.

(b) To generate data from the entropy pool SPCP Un
as used by func-

tion 2.6, a hash final operation is performed.
(c) Once a hash final operation is performed it is followed by an immedi-

ate re-initialization of the hash state with a hash init operation and
adding the just calculated message digest with the first hash update.

The implementation is provided with function esdm_sched_pool_hash_one
generating data from the per-CPU entropy pool:

SPCP Un
= SHA(SPCP Un−1 ||CPSCHEDm−(n−1) ||...||CPSCHEDm−1 ||CPSCHEDm

)
(2.5)

Note: The hash update is performed at the time the operation of equa-
tion 2.6 is invoked, i.e. at the time the DRNG is reseeded. This operation
therefore is performed in process context. This guarantees that all unpro-
cessed entropy data in the collection pool is added to the entropy pool at
the time the entropy pool is requested for random data. This implies that
he oldest entries in the collection pool are overwritten with newer entropy
event data when more entropy events are collected than can be held in
the collection pool between DRNG reseeds.

2. Hashing: For the scheduler-based entropy source, a message digest of all
per-CPU entropy pools is calculated. This message digest is used to fill
the interrupt entropy source output buffer S discussed in the following -
the implementation is provided with function esdm_sched_pool_hash:

SPalln = SHA(SPCP U0n ||SPCP U1n || ... ||SPCP UXn) (2.6)

3. Truncation: Just like the interrupt entropy source, the scheduler entropy
source applies a truncation to the generated data as implemented by the
function esdm_sched_pool_hash:

Sn = MSBmin(entropy,security strength)(SPn) (2.7)

15

2.2.4 Auxiliary Entropy Pool

1. Hashing: When new data Dm is added to the auxiliary pool AP , the
data is inserted into the auxiliary pool with a hash update operation
- the implementation is provided with function ESDM_pool_insert_aux.
The message digest generation is performed at the time entropy from the
auxiliary pool is requested. To ensure backward secrecy, the temporary
seed buffer Tn−1 that holds among others the auxiliary pool digest from the
previous generation round as depicted with equation 2.12 is concatenated
with the received data:

APn = SHA(Tn−1||Dm−(n−1)||...||Dm−1||Dm) (2.8)

2. Truncation: The MSB of the auxiliary pool of the size of the DRNG
security strength are used for the seed buffer:

An = MSBmin(digest size,security strength)(APn) (2.9)

2.2.5 CPU Entropy Source

1. Hashing: If the CPU entropy source provides less than full entropy, a
message digest of the amount of data to be requested from it is calculated:

Ccond = SHA(C1|| ... ||Cm) (2.10)

2. Truncation: If the CPU entropy source provides less than full entropy,
the MSB defined by the requested number of bits (commonly equal to the
security strength of the DRBG) or the applied message digest size, what
ever is smaller, are obtained - the implementation is provided with func-
tion ESDM_get_arch_data_compress – otherwise Cn is the data obtained
directly from the CPU entropy source:

Cn = MSBmin(digest size,security strength)(Ccond) (2.11)

2.2.6 Temporary Seed Buffer Construction

1. Concatenation: The temporary seed buffer T used to seed the DRNG
at the time n is a concatenation of one or more of the following entropy
source data sets, depending on the compile-time configuration:

(a) the auxiliary pool entropy source A,
(b) the interrupt entropy source buffer E,
(c) the scheduler entropy source buffer S,
(d) the Jitter RNG output J ,
(e) the CPU entropy source output C,
(f) the kernel RNG entropy source output K,
(g) the Linux HWRAND framework H,and
(h) the current time t

with the implementation is provided with function esdm_fill_seed_buffer:

Tn = An||En||Sn||Jn||Cn||Kn||Hn||t (2.12)

16

2.3 ESDM Architecture
Before going into the details of the ESDM processing, the concept underlying
the ESDM shown in figure 2.1 is provided here.

The entropy derived from the slow entropy sources is collected and accu-
mulated in the entropy pools which contain already compressed entropy data,
supported by the collection pools which contain uncompressed, but only con-
catenated entropy data.

At the time the DRNG shall be seeded, the all entropy pools, any non-
compressed data in the collection pools and the auxiliary pool are processed
with a cryptographic hash function which can be chosen at runtime.

For the entropy pool, if the digest of the hash and the available entropy are
larger than requested by the caller, the digest is truncated to the appropriate
size. For the auxiliary pool, always 256 bits of data are returned irrespective of
the entropy rate of this pool. This ensures that also data that is not credited
with entropy but injected into the ESDM is used to stir the seed for the DRNG.

The DRNG always tries to seed itself with 256 bits of entropy, except dur-
ing boot. In any case, if the entropy sources cannot deliver that amount, the
available entropy is used and the DRNG keeps track on how much entropy it
was seeded with. The entropy implied by the ESDM available in the entropy
pool may be too conservative. To ensure that during boot time all available
entropy from the entropy pool is transferred to the DRNG, the hash function
always generates 256 data bits during boot to seed the DRNG. During boot,
the DRNG is seeded as follows:

1. The DRNG is reseeded from the entropy sources if all entropy sources
collectively have at least 256 bits of entropy available.

The ESDM also implements a forced seeding operation. This is performed when
a blocking interface has blocked a request 5 times because the DRNG is not fully
seeded. The forced seeding performs a continuous reseeding of the DRNG in an
atomic operation with existing entropy. This means that a regular reseeding is
triggered repeatedly as often as needed to obtain 256 bits of entropy to reach the
fully seeded level. In this case, the entropy obtained from the entropy sources
is added up. This is permissible because the multiple reseeding operations are
performed while the DRNG is locked, i.e. the DRNG will not produce output
in that time.

At the time of the reseeding steps, the DRNG requests as much entropy as
is available in order to skip certain steps and reach the seeding level of 256 bits.
This may imply that one or more of the aforementioned steps are skipped.

In all listed steps, the DRNG is (re)seeded with a number of random bytes
from the entropy pool that is at most the amount of entropy present in the
entropy pool. This means that when the entropy pool contains 128 or more bits
of entropy, the DRNG is seeded with that amount of entropy as well.

Before the DRNG is seeded with 256 bits of entropy in the last step, requests
of random data from the blocking interfaces are not processed.

At runtime the DRNG operates as deterministic random number generator
with the following properties:

• The maximum number of random bytes that can be generated with one
DRNG generate operation is limited to 4096 bytes. When longer ran-

17

dom numbers are requested, multiple DRNG generate operations are per-
formed. The used DRNGs implement an update of their state during the
generation operation for backward secrecy.

• The DRNG is reseeded with whatever entropy is available, but at least
128 bits (256 bits if SP800-90C compliance is enabled) – in the worst case
where no additional entropy can be provided by the entropy sources, the
DRNG is not re-seeded and continues its operation to try to reseed again
after again the expiry of one of these thresholds:

– If the last reseeding of the DRNG is more than 600 seconds ago2, or
– 220 DRNG generate operations are performed, whatever comes first,

or
– the DRNG is forced to reseed before the next generation of random

numbers if data has been injected into the ESDM by writing data into
/dev/random or /dev/urandom or the respective RPC interfaces.

The chosen values prevent high-volume requests from user space to cause
frequent reseeding operations which drag down the performance of the
DRNG3.

• If the DRNG was not reseeded for the last 230 DRNG generate opera-
tions – i.e. the reseeding requests discussed in the previous bullets were
unsuccessful – the DRNG reverts back to an unseeded state. This applies
that the DRNG will not produce random numbers when accessed via the
blocking interfaces. In this case, the DRNG behaves like during boot time.

With the automatic reseeding after 600 seconds, the ESDM is triggered to reseed
itself before the first request after a suspend that put the hardware to sleep for
longer than 600 seconds.

2.3.1 Minimally Versus Fully Seeded Level

The ESDM’s DRNG is reseeded when the first 128 bits / 256 bits of entropy are
received during boot as indicated above. The 128 bits level defines that that
the DRNG is considered “minimally” seeded whereas reaching the 256 bits level
is defined as the DRNG is “fully” seeded.

Both seed levels have the following implications:

• Upon reaching the minimally seeded level, the kernel-space callers waiting
for a seeded DRNG via the API calls of either esdm_get_random_bytes_min
is woken up.

2Note, this value will not empty the entropy pool even on a completely quiet system.
Testing of the ESDM was performed on a KVM without fast entropy sources and with a
minimal user space, where only the SSH daemon was running, During the testing, no operation
was performed by a user. Yet, the system collected more than 256 bits of entropy from the
interrupt entropy source within that time frame, satisfying the DRNG reseed requirement.

3Considering that the maximum request size is 4096 bytes defined by
ESDM_DRNG_MAX_REQSIZE (i.e. each request is segmented into 4096 byte chunks) and at
most 220 requests defined by ESDM_DRNG_RESEED_THRESH can be made before a forced reseed
takes place, at most 4096 · 220 = 4, 294, 967, 296 bytes can be obtained from the DRNG
without a reseed operation.

18

• When reaching the fully seeded level, the user-space callers waiting for a
fully seeded DRNG via the getrandom system call or /dev/random are
woken up. Using the ESDM API of esdm_get_random_bytes_full, the
caller is waiting synchronously until the fully seeded level is reached.

2.3.2 NUMA Systems

To prevent bottlenecks in large systems, the DRNG will be instantiated once
for each NUMA node. The instantiations of the DRNGs happen all at the same
time when the ESDM is initialized.

The question now arises how are the different DRNGs seeded without re-
using entropy or relying on random numbers from a yet insufficiently seeded
ESDM. The ESDM seeds the DRNGs sequentially starting with the one for
NUMA node zero – the DRNG for NUMA node zero is seeded with the approach
of 256 bits of entropy stepping discussed above. Once the DRNG for NUMA
node 0 is seeded with 256 bits of entropy, the ESDM will seed the DRNG of
node one when having again 256 bits of entropy available. This is followed by
seeding the DRNG of node two after having again collected 256 bits of entropy,
and so on. Figure 2.3 illustrates the seeding strategy showing that each DRNG
instance is freshly seeded with a separate seed buffer.

DRNG
Node 0

DRNG
Node 1

DRNG
Node 2

Figure 2.3: DRNG Instances on NUMA systems with seeding strategy

When producing random numbers, the ESDM tries to obtain the random
numbers from the NUMA node-local DRNG. If that DRNG is not yet seeded,
it falls back to using the DRNG for node zero.

Note, to prevent draining the entropy pool on quiet systems, the time-based
reseed trigger, which is 600 seconds per default, will be increased by 100 seconds
for each activated NUMA node beyond node zero. Still, the administrator is
able to change the default value at runtime.

2.3.3 Flexible Design

Albeit the preceding sections look like the DRNG and the management logic
are highly interrelated, the ESDM code allows for an easy replacement of the
DRNG with another deterministic random number generator. This flexible
design allowed the implementation of the ChaCha20 DRNG if the SP800-90A
DRBG is not desired.

To implement another DRNG, all functions in struct esdm_drng_cb in
“esdm_crypto.h” must be implemented. These functions cover the alloca-
tion/deallocation of the DRNG as well as its usage. Similarly, all functions

19

in struct esdm_hash_cb from “esdm_crypto.h” must be implemented to pro-
vide the the conditioning hash.

The implementations can be changed at compile time. The default imple-
mentation is the SP800-90A Hash-DRBG using a software-implementation of
the used SHA-512 message digest for accessing the entropy pools.

In addition, the ESDM allows the addition of new entropy sources.

2.4 ESDM Data Structures
The ESDM uses the following main data structures:

• The data from the interrupt entropy source is processed with a per-CPU
entropy pool. In addition, a per-CPU collection pool that can hold the
concatenated time stamps is maintained. Both are accessed lockless since
the currently executing CPU’s entropy pool and collection pool is used.
During access to the entropy pool, the ESDM though takes a lock since
the entropy pool is also read when the hash is calculated for filling the
seed buffer. As the filling of the seed buffer is very infrequently (see above
for the reseed periods of the DRNG), the lock is hardly contented which
allows the conclusion that the entropy collection operates quasi-lockless.

• The scheduler entropy source defines per-CPU collection pools. The en-
tropy pools are not maintained as compression of scheduler-based entropy
sources is only performed when the DRNG shall be (re)seeded. The entire
scheduler-based entropy source operates lock-less.

• The cryptographic algorithm data structures hold the reference to the
DRNG instance and the hash instance and associated meta data needed
for its operation. When using the DRNG, a full read/write lock is used to
guard (a) against replacement of the DRNG reference while operating on
the DRNG state, and (b) to read/write the DRNG state. Contrarily when
using the hash, only a read-lock is used to guard against the replacement
of the hash reference. This implies that the hash state is kept on the stack
of the calling application.

2.5 Interrupt Processing - ESDM-internal Entropy Source
The ESDM hooks a callback into the bottom half interrupt handler at the same
location where the legacy /dev/random places its callback hook.

The ESDM interrupt processing callback is a void function that also does
not receive any input from the interrupt handler. That interrupt processing
callback is the hot code path in the ESDM and special care is taken that it is
as short as possible and that it operates without locking.

Figure 2.4 illustrates the interrupt processing performed by the ESDM. The
figure specifies which parts of the interrupt processing execute in IRQ context
and which executes in process context. The operations executed in interrupt
context are all completely listed in this section. All steps executed in process
context are illustrated in section 2.11.

The figure depicts the example when one interrupt arrives on CPU 0. If
an interrupt arrives on another CPU, the same operation is applied, but the
respective CPU-local collection pool and entropy pool is used. The entropy

20

pools from other CPUs in the figure therefore are filled with the same processing
steps, which, however, are not shown.

Entropy Estim.Entropy Estim.

IRQ

... CPU 0 Collection Pool

Other
Event Data/ GCD & 0xFF

Health TestHealth Test

Hash

64-bit
Cycle
Count

...

CPU 0
Entropy Pool

Hash Interrupt ES
Seed DataHash

CPU 1
Entropy Pool

Hash
CPU N

Entropy Pool

...

IRQ Context CPU 0

Process Contextif LRNG_CONTINUOUS_COMPRESSION_ENABLED
 IRQ Context
else
 Process Context

32-bit

Figure 2.4: Interrupt Processing

The following processing happens when an interrupt is received and the
ESDM is triggered:

1. A high-resolution time stamp is obtained using the service random_get_entropy
kernel function. This integer value is divided by a GCD to eliminate bits
that do not change. Although that function returns a 64-bit integer, only
the bottom 8 bits, i.e. the fast moving bits, are used for further process-
ing. To ensure fast processing, these 8 bits are concatenated and stored
in the operating CPU’s data collection pool. After the receipt of 1,024
time stamps, the data collection pool with all concatenated time stamps
is inserted into the currently executing CPU’s entropy pool. During boot
time until the ESDM completed the calculation of the GCD, the 32 least
significant bits of the data are directly inserted into the CPU’s entropy
pool. Entropy is contained in the variations of the time of events and its
time delta variations. Figure 2.1 depicts the time stamp array holding the
8-bit time stamp values.

2. The health tests discussed in section 2.6.2 are performed on each received
time stamp where the truncated time stamp value is forwarded to the
health test. Unless 1,024 time stamps have been received, the processing
of an interrupt stops now.

3. The per-CPU collection pool is added to the same CPU’s entropy pool by
performing a hash update operation. This approach works as the per-CPU
entropy pool is managed as the message digest state. When data of the
per-CPU entropy is to be extracted, a hash final operation is performed
followed by an immediate re-initialization of the state buffer using the
message digest of the previous extraction. This operation is depicted in
figure 2.5 for the entropy pool maintained by CPU 0. The other CPUs
perform the same processing with their independent copy of the collection
pool and the entropy pool. In case the continuous compression support is
disabled, the hash operation is not performed. Instead, the oldest entropy
values in the collection pool are overwritten with the latest entropy value.
In case the continuous compression operation is disabled, the hash update

21

operation is conducted in process context at the time of obtaining random
numbers from the entropy pool requested to seed the DRNG documented
in section 2.11.

Hash Init

Hash Update

Hash Update

Hash Update

Hash Final

Hash Init Digest CPU0

Hash Update

Kernel Start

...

...

...

...

Filled Collection Pool Instances

CPU 0

Entropy Pool

Digest CPUn

Digest CPU1 CPU 1

CPU n

Figure 2.5: Collection Pool Processing

4. The ESDM increases the per-CPU counter of the received interrupt events
by the number of healthy interrupts stored in the per-CPU collection pool.
This counter is translated into an entropy statement when the ESDM
wants to know how much entropy is present in the entropy pool. This
counter is also adjusted when reading data from the entropy.

5. The ESDM server implements a monitor thread that polls the interrupt
ES for its entropy level until all DRNGs become fully seeded. While the
poll monitor is active, every time the interrupt ES entropy rate reaches
the security strength of the ESDM, a reseed is triggered as discussed in
section 2.11.

6. If all DRNG instances are fully seeded, the poll monitor stops. This
implies that only during boot time the next step is triggered. At runtime,
the entropy sources will not trigger a reseeding of the DRNG.

The entropy collection mechanism is available immediately after the kernel RNG
reached full entropy. This shall guarantee that the kernel RNG is fully seeded
before hijacking its main entropy source. To prevent starving the kernel RNG,
the ESDM server starts a thread that reseeds the kernel RNG once every 2
minutes with 256 bits of data.

In case the underlying system does not support a high-resolution time stamp,
step 2 in the aforementioned list is changed to fold the following 32 bit values
each into one bit and XOR all of those bits to obtain one final bit:

• IRQ number,

• High 32 bits of the instruction pointer,

• Low 32 bits of the instruction pointer,

• A 32 bit value obtained from a register value – the ESDM iterates through
all registers present on the system.

22

2.5.1 Entropy Amount of Scheduling Events

The discussion of the entropy content of interrupt events in section 2.6.1 applies
to the scheduler-based entropy. The only difference is the use of a different
compile-time entropy value of ESDM_IRQ_ENTROPY_RATE.

2.5.2 Health Tests

The health tests documented in section 2.6.2 are applied to the scheduler entropy
source as well. The ESDM ensures that the health tests for the interrupt and
the scheduler entropy sources are strictly separated. This separation applies to
the SP800-90B as well.

2.6 Scheduler Events - ESDM-internal Entropy Source
The ESDM hooks into the scheduling operation of the Linux kernel which is
triggered every time a context switch is performed as initiated by the scheduler.
The ESDM handling of a scheduling event is depicted with figure 2.6.

Entropy Estim.

Context
Switch

... CPU 0 Collection Pool

/ GCD & 0xFF

Health Test
64-bit
Cycle
Count

...

Hash

Scheduler ES
Seed Data

...

Scheduler Execution CPU 0

Process Context

...CPU 1 Collection Pool

...CPU 2 Collection Pool

...CPU N Collection Pool

Scheduler Execution CPU x

Hash

Hash

Hash

Hash

Figure 2.6: Scheduler-event Processing

When a context switch occurs, the ESDM callback is invoked which obtains
a high-resolution time stamp that is concatenated into the CPU-local collec-
tion pool. When the CPU-local collection pool is full, the oldest entries are
overwritten by the latest time stamp.

At the time the DRNG shall be (re)seeded, a message digest of each scheduler
per-CPU collection pool is calculated to fill the per-CPU scheduler entropy pool
as outlined in figure 2.7. This figure shows that first the collection pool is
inserted into a per-CPU scheduler entropy pool which then is inserted into the
temporary seed buffer. This guarantees that “unused entropy” is appropriately
protected by the per-CPU scheduler entropy pool. The data processing concepts
between the scheduler ES and the interrupt ES are identical when comparing
the figures in this section to section 2.5.

23

Hash Init

Hash Update

Hash Final

Hash Init Digest CPU0

Hash Update

Kernel Start

...
Filled Collection Pool Instance

CPU 0

Entropy Pool

Digest CPUn

Digest CPU1 CPU 1

CPU n

Figure 2.7: Scheduler per-CPU Entropy Pool Management

This entire message digest calculation is performed in the process context.
Therefore, the hashing operation is not performed as part of the scheduling op-
eration. The message digest is truncated to the entropy available in all sched-
uler per-CPU collection pools or the requested amount of entropy, whatever is
smaller. Note, the requested amount of entropy is always smaller or equal to
the size of the message digest of the used hashing algorithm.

As a side note, the scheduler entropy source potentially has some relationship
with the IRQ entropy source because an IRQ may trigger a scheduler event (e.g.
with the flag TIF_NEED_RESCHED). Therefore, both entropy sources cannot be
used at the same time and credit entropy to both. It is permissible to use both,
but only one is credited with entropy.

2.6.1 Entropy Amount of Interrupts

The question now arises, how much entropy is generated with the scheduler en-
tropy source. The current implementation implicitly assumes one bit of entropy
per time stamp obtained for one scheduling event.

With the kernel compile time parameter of ESDM_SCHED_ENTROPY_RATE the
number of interrupts that must be collected to obtain 256 bits of entropy can be
specified. This value is forced by the ESDM to be at least the aforementioned
limit, i.e. 256 interrupts.

The entropy of high-resolution time stamps is provided with the fast-moving
least significant bits of a time stamp which is supported by the quantitative
measurements shown in section 4. Although only one bit of entropy is assumed
to be delivered with a given time stamp the ESDM uses the 8 least significant
bits (LSB) of the time stamp to provide a cushion for ensuring that at any given
time stamp there is always at least one bit of entropy collected on all types of
environments.

However, the question may be raised of why not use more data of the time
stamp, i.e. why not using 32 bits or the full 64 bits of the time stamp to
increase that cushion? There main answer is performance and memory con-
sumption. The collection of a time stamp is performed as part of an scheduling
function. Therefore, the performance of the ESDM in this code section is highly
performance-critical. To limit the impact on the scheduler, the ESDM concate-
nates the 8 LSB of 1,024 time stamps received by the current CPU. The second
aspect is that the higher bits of the time stamp must always be considered to
have zero bits of entropy when considering the worst case of a skilled attacker.

24

As the ESDM cannot identify whether it is under attack by a skilled attacker,
it always assumes it is under attack.

The Linux kernel allows unprivileged user space processes to monitor the
scheduling events of interrupts by reading the process listing with a certain
degree of accuracy. The ESDM uses a high-resolution time stamp that executes
with nanosecond precision on 1 GHz systems. Local attackers are expected to
be measure the occurrence of a scheduling event with a microsecond precision.
The distance between a microsecond and a nanosecond is 210. Thus, when
the attacker is assumed to predict the interrupt occurrence with a microsecond
precision and the time stamp operates with nanosecond precision, 10 bits of
uncertainty remains that cannot be predicted by that attacker. Hence, only
these 10 bits can deliver entropy.

To ensure the ESDM interrupt handling code has the maximum performance,
it processes time stamp values with a number of bits equal to a power of two.
Thus, the ESDM implementation uses 8 LSB of the time stamp (after the time
stamp was divided by its GCD).

During boot time, the presence of attackers is considered to be very limited
as no remote access is yet possible and no local attack applications are assumed
to execute. On the other hand, the performance of the interrupt handler is
not considered to be very critical during the boot process. Thus, the ESDM
uses the 32 LSB of the time stamp that is injected into the per-CPU collection
pool when the time stamp is collected – the ESDM still awards this time stamp
one bit of entropy. Once the ESDM completed the calculation of the GCD
the aforementioned runtime behavior of concatenating the 8 LSB of 1,024 time
stamps before mixing them into the per-CPU entropy pool is enabled.

2.6.2 Health Tests

The ESDM implements the following health tests:

• Stuck Test

• Repetition Count Test (RCT)

• Adaptive Proportion Test (APT)

Those tests are detailed in the following sections.
Please note that these health tests are only performed for the internal entropy

sources. Other entropy sources like the entropy sources feeding the auxiliary
pool, the Jitter RNG, or the CPU-based entropy sources are not covered by
these tests as they are fully self-contained entropy sources where the ESDM
does not have access to the raw noise data and does not include a model of the
entropy source to implement appropriate health tests. The ESDM considers
both as external entropy source. Thus, the user must ensure that either those
other entropy sources implement all health tests as needed or the kernel must
be started such that these entropy sources are credited with zero bits of entropy.
Not crediting any entropy to these other entropy sources can be achieved with
the following kernel configuration options:

• Sources feeding the auxiliary entropy pool: The interface functions to
provide entropy data have to be invoked with the value 0 for the entropy
rate.

25

• CPU-based entropy source: ESDM_CPU_ENTROPY_RATE=0

• Jitter RNG: ESDM_JENT_ENTROPY_RATE=0

These options ensure that random data from the entropy sources are pulled,
but are not credited with any entropy.

The RCT, and the APT health test are only performed when the kernel
is booted with fips=1 and the kernel detects a high-resolution time stamp
generator during boot.

In addition, the health tests are only enabled if a high-resolution time stamp
is found. Systems with a low-resolution time stamp will not deliver sufficient
entropy for the interrupt entropy source which implies that also the health tests
are not applicable.

Stuck Test The stuck test calculates the first, second and third discrete
derivative of the time stamp to be processed by the per-CPU collection pool.
Only if all three values are non-zero, the received time delta is considered to
be non-stuck. The first derivative calculated by the stuck test verifies that two
successive time stamps are not equal, i.e. are “stuck”. The second derivative
calculates that there is no linear repetitive signal.

The third derivative of the time stamp is considered relevant based on the
following: The entropy is delivered with the variations of the occurrence of
interrupt events, i.e. it is mathematically present in the time differences of
successive events. The time difference, however, is already the first discrete
derivative of time. Now, if the time difference delivers the actual entropy, the
stuck test shall catch that the time differences are not stuck, i.e. the first
derivative of the time difference (or the second derivative of the absolute time
stamp) shall not be zero. In addition, the stuck test shall ensure that the
time differences do not show a linear repetitive signal – i.e. the second discrete
derivative of the time difference (or the third discrete derivative of the absolute
time stamp) shall not be zero.

Repetition Count Test The ESDM uses an enhanced version of the Rep-
etition Count Test (RCT) specified in SP800-90B [2] section 4.4.1. Instead of
counting identical back-to-back values, the input to the RCT is the counting of
the stuck values during the processing of received interrupt events. The data
that is mixed into the entropy pool is the time stamp. As the stuck result in-
cludes the comparison of two back-to-back time stamps by computing the first
discrete derivative of the time stamp, the RCT simply checks whether the first
discrete derivative of the time stamp is zero. If it is zero, the RCT counter is
increased. Otherwise, the RCT counter is reset to zero.

The RCT is applied with α = 2−30 compliant to the recommendation of
FIPS 140-2 IG 9.8.

During the counting operation, the ESDM always calculates the RCT cut-
off value of C. If that value exceeds the allowed cut-off value, the ESDM will
trigger the health test failure discussed below. An error is logged to the kernel
log that such RCT failure occurred.

This test is only applied and enforced in FIPS mode.

26

Adaptive Proportion Test Compliant to SP800-90B [2] section 4.4.2 the
ESDM implements the Adaptive Proportion Test (APT). Considering that the
entropy is present in the least significant bits of the time stamp, the APT is
applied only to those least significant bits. The APT is applied to the four least
significant bits.

The APT is calculated over a window size of 512 time deltas that are to
be mixed into the entropy pool. By assuming that each time stamp has (at
least) one bit of entropy and the APT-input data is non-binary, the cut-off
value C = 325 as defined in SP800-90B section 4.4.2.

This test is only applied and enforced in FIPS mode.

Runtime Health Test Failures If either the RCT, or the APT health test
fails irrespective whether during initialization or runtime, the following actions
occur:

1. The entropy of the entire entropy pool is invalidated.

2. All DRNGs are reset which imply that they are treated as being not seeded
and require a reseed during next invocation.

3. The SP800-90B startup health test are initiated with all implications dis-
cussed in section 2.6.2. That implies that from that point on, new events
must be observed and its entropy must be inserted into the entropy pool
before random numbers are calculated from the entropy pool.

SP800-90B Startup Tests The aforementioned health tests are applied to
the first 1,024 time stamps obtained from scheduler events. In case one error is
identified for either the RCT, or the APT, the collected entropy is invalidated
and the SP800-90B startup health test is restarted.

As long as the SP800-90B startup health test is not completed, all ESDM
random number output interfaces that may block will block and not generate
any data. This implies that only those potentially blocking interfaces are defined
to provide random numbers that are seeded with the interrupt entropy source
being SP800-90B compliant. All other output interfaces will not be affected by
the SP800-90B startup test and thus are not considered SP800-90B compliant.

To summarize, the following rules apply:

• SP800-90B compliant output interfaces

– /dev/random

– getrandom(2) system call when called with a flag that does not in-
clude GRND_INSECURE

– esdm_get_random_bytes_full API call
– esdm_get_random_bytes_pr API call

• SP800-90B non-compliant output interfaces

– /dev/urandom

– getrandom(2) system call when called with GRND_INSECURE

– esdm_get_random_bytes API call
– esdm_get_random_bytes_min API call

27

2.7 Auxiliary Entropy Pool - ESDM-external Entropy Sources
The ESDM also supports obtaining entropy from the following data sources and
entropy sources that are external to the ESDM. The data is injected into the
auxiliary pool.

During the reseeding operation of the DRNG, any user-space entropy provider
waiting via select(2) are triggered to provide one buffer full of data. This data
is mixed into the auxiliary pool. This approach shall ensure that the ESDM-
external entropy sources may provide entropy at least once each DRNG reseed
operation.

2.7.1 Injecting Data From User Space

User space can take the following actions to inject data into the DRNG:

• When writing data into /dev/random or /dev/urandom, the data is added
to the auxiliary pool and triggers a reseed of the DRNGs at the time the
next random number is about to be generated. The ESDM assumes it has
zero bits of entropy.

• When using the privileged IOCTL of RNDADDENTROPY with /dev/random,
the caller can inject entropic data into the auxiliary pool and define the
amount of entropy associated with that data.

2.7.2 Auxiliary Pool

The auxiliary pool is maintained as a separate entropy source that eventually
is concatenated with all other entropy sources in compliance with SP800-90C.

The auxiliary pool is processed with the available hash as follows:

1. Data is inserted the same way as data is added into the per-CPU entropy
pools. The auxiliary pool technically is the message digest state where
new data is inserted into the pool by performing a hash update operation.

2. When entropy is to be extracted from the auxiliary pool, a hash final oper-
ation is performed which is immediately followed by a hash init operation
to initialize the hash context for new data.

3. The generated message digest is truncated to the amount of data requested
by the DRNG (e.g. either 256 or 384 bits) and returned to the caller. Note,
the auxiliary pool output is not truncated to the amount of entropy the
data contains because the entropy provider may add data to the auxiliary
pool without entropy, e.g. by simply writing to /dev/random. Thus, it
may be possible that the auxiliary pool contains zero bits of entropy but
yet contains data that should be used to “stir” the DRNG state.

Figure 2.8 illustrates the auxiliary pool operation for the case when user space
inserts three separate buffers.

28

User Space
Writes
IOCTLHash Init

Hash Update

Hash Update

Hash Update

Hash Final

Hash Init

Hash Update

ESDM lib start

...

User Space
Writes
IOCTL

Auxiliary Pool

User Space
Writes
IOCTL

Figure 2.8: Auxiliary Pool Processing

In addition, the ESDM maintains an entropy estimator for the auxiliary pool
counting the received entropy. The entropy estimator is capped to a maximum
of the digest size of the used hash as this hash cannot maintain more entropy.

The auxiliary pool message digest is copied into the seed buffer when gener-
ating random numbers to seed the DRNG. The entire seed buffer is mixed back
into the auxiliary pool for backward secrecy as shown in figure 2.8. The copy
operation as well as the backtracking operation is atomic with respect to the
auxiliary pool. This implies that both operations will always be fully completed
before the next operation can commence. This ensures that the same auxiliary
pool state can only be used once for a given seeding operation. Thus, both,
the entropy pool and the auxiliary pool, are simultaneously used as noise data
provider to seed the DRNG.

The entropy estimator is decreased by the amount of data read via the
message digest.

2.8 Jitter RNG - ESDM-external Entropy Source
The Jitter RNG is treated as an external entropy source which is requested for
random bits at the time the DRNG shall be seeded.

2.8.1 Entropy of CPU Jitter RNG Entropy Source

The CPU Jitter RNG entropy source is assumed provide 16th bit of entropy per
generated data bit. Albeit studies have shown that significant more entropy is
provided by this entropy source, a conservative estimate is applied.

The entropy value can be altered by changing the meson configuration option
of es_jent_entropy_rate.

2.9 CPU-base Entropy Source - ESDM-external Entropy
Source

The CPU-based entropy source is treated as an external entropy source which
is requested for random bits at the time the DRNG shall be seeded. Depending
on the underlying CPU, only one such source is available like RDSEED on
Intel x86 (or RDRAND if RDSEED is not available), the POWER CPU DARN
instruction, etc.

29

Depending whether the the CPU entropy source is documented to full en-
tropy, the following data collection methods are applied. This approach is or-
thogonal to the amount of entropy the ESDM awards to the CPU entropy
source.

• CPU entropy source provides full entropy: The CPU entropy source is
queried for the amount of data which is stored in the temporary seed
buffer.

• CPU entropy source provides less than full entropy: For this entropy
source, the ESDM contains the information about how much data must
be fetched from the CPU entropy source to get full entropy. The required
amount of data is pulled from the CPU entropy source and conditioned
with the hash currently in use by the ESDM. The calculated message di-
gest is truncated to the requested amount of data which is stored in the
temporary seed buffer.

2.9.1 Entropy of CPU Entropy Source

The entropy source of the CPU is assumed to have one 32th of the generated
data size – 8 bits of entropy. The reason for that conservative estimate is
that the design and implementation of those entropy sources is not commonly
known and reviewable. The entropy value can be altered by changing the meson
configuration option of es_cpu_entropy_rate.

2.10 Kernel RNG Entropy Source - ESDM-external En-
tropy Source

The ESDM offers the use of the kernel RNG as an entropy source. The kernel
RNG derives its entropy from sampling of interrupts.

The legacy RNG is queried for random numbers using the getrandom(2)
system call.

2.10.1 Entropy of Kernel RNG Entropy Source

When the lernel RNG is enabled, the ESDM applies the entropy rate defined
at compile time with es_kernel_entropy_rate which is a value between 0 and
256 bits of entropy when 256 data bits are pulled from the legacy RNG.

If the ESDM is operated in FIPS mode, i.e. the kernel command line contains
“fips=1”, the kernel RNG entropy source’s entropy rate is set to zero. The
reason is that the legacy RNG is known to not comply with FIPS 140 rules like
SP800-90B and thus must be assumed to provide no entropy.

When the interrupt entropy source is present, the kernel entropy source en-
tropy rate is capped to ESDM_ES_IRQ_MAX_KERNEL_RNG_ENTROPY bits of entropy.
This is due to the fact that the presence of IRQ entropy source takes away the
kernel RNG’s main entropy source. Yet, some other entropy sources are present
which may or may not deliver entropy. Thus a safe entropy value is applied by
the ESDM.

30

2.11 DRNG Seeding Operation
The seeding operation obtains random data from all available entropy sources.

The (re)seeding logic tries to obtain 256 bits of entropy from the entropy
sources. However, if less entropy can only be delivered, the DRNG reseeding
is only performed if at least 128 bits of entropy collectively from all entropy
sources can be obtained.

For efficiency reasons, the seeding operation uses a seed buffer depicted in
figure 2.1 that is the following set of blocks of 256 bits each. If SP800-90C
compliance is enabled, the initial seeding of the DRNG is seeded with a seed
buffer that pulls 384 bits in the following blocks. Each block is dedicated to an
entropy source. As each entropy source can be disabled at compile time, the
different bullets in the following list only applies if the corresponding entropy
source is enabled.

1. One block is filled with the message digest from the auxiliary pool.

2. One block contains the message digest calculated from all per-CPU inter-
rupt entropy pools as depicted in figure 2.4 That buffer receives as much
data from the hash operation as entropy can be pulled from the entropy
pools. In the worst case when no new interrupts are received a zero buffer
will be injected into the DRNG. This is performed by iterating over all
per-CPU entropy pools and:

(a) Perform a hash update operation to inject the current content of the
per-CPU collection pool into the per-CPU entropy pool.

(b) Perform a hash final operation on the per-CPU entropy pool to obtain
the message digest.

(c) That message digest is used to re-initialize the per-CPU entropy pool
with a hash init and hash update operation to ensure backward se-
crecy.

(d) Also, the message digest is fed into the hash operation to collect the
output from all entropy pools.

Once the message digest from all is obtained, it is truncated to the amount
of entropy present in all entropy pools.

3. Another block is filled with the message digest of all scheduler per-CPU
entropy pools with the same approach as outlined for the interrupt ES.

4. One block is filled with the data from the kernel RNG entropy source.

5. The next block is filled by the Jitter RNG entropy source.

6. Finally, a block is filled by the fast entropy source of the CPU entropy
source.

Finally, also a 32 bit time stamp indicating the time of the request is mixed into
the DRNG. That time stamp, however, is not assumed to have entropy and is
only there to further stir the state of the DRNG.

The filled seed buffer is handed to the DRNG as a seed string. In addition,
the seed buffer is inserted back into the auxiliary pool for backward secrecy.
The seed buffer will not alter the entropy estimation of the auxiliary pool.

31

2.11.1 DRNG May Become Not Fully Seeded

The ESDM maintains a counter for each DRNG instance how many generate
operation are performed without performing a reseed that has full entropy. If
this counter exceeds the threshold of 230 generate operations, i.e. the DRNG
did not receive a seed with full entropy for that many generate operations, the
DRNG is set to not fully seeded. This setting implies that the DRNG instance
will not be used any more for generating random numbers until the ESDM
received sufficient entropy to reseed the DRNG with full entropy.

If the DRNG that becomes not fully seeded is the initial DRNG instance
that was seeded during boot time as outlined in section 2.3.1, the entire ESDM
is marked as not operational. This setting blocks all blocking interfaces just like
during boot time when the ESDM is not yet fully seeded.

The ESDM automatically tries to recover from it when it received sufficient
entropy.

2.12 Cryptographic Primitives Used By ESDM
The following subsections explain the cryptographic primitives that may be used
by the ESDM.

2.12.1 DRBG

If the SP800-90A DRBG implementation is used, the default DRBG used by the
ESDM is the CTR DRBG with AES-256. The reason for the choice of a CTR
DRBG is its speed. The source code allows the use of other types of DRBG by
simply defining a DRBG reference using the kernel crypto API DRBG string –
see the top part of the source code for examples covering all types of DRBG.

All DRNGs are always instantiated with the same DRNG type.
The implementation of the DRBG is taken from the Linux kernel crypto

API. The use of the kernel crypto API to provide the cipher primitives allows
using assembler or even hardware-accelerator backed cipher primitives. Such
support should relieve the CPU from processing the cryptographic operation as
much as possible.

The input with the seed and re-seed of the DRBG has been explained above
and does not need to be re-iterated here. Mathematically speaking, the seed and
re-seed data obtained from the entropy sources and the ESDM external sources
are mixed into the DRBG using the DRBG “update” function as defined by
SP800-90A.

The DRBG generates output with the DRBG “generate” function that is
specified in SP800-90A. The DRBG used to generate two types of output that
are discussed in the following subsections.

/dev/urandom and esdm_get_random_bytes Users that want to obtain
data via the /dev/urandom interface or the esdm_get_random_bytes API are
delivered data that is obtained from the DRNG “generate” function. I.e. the
DRNG generates the requested random numbers on demand.

Data requests on either interface is segmented into blocks of maximum 4096
bytes. For each block, the DRNG “generate” function is invoked individually.
According to SP800-90A, the maximum numbers of bytes per DRBG “generate”

32

request is 219 bits or 216 bytes which is significantly more than enforced by the
ESDM.

In addition to the slicing of the requests into blocks, the ESDM maintains
a counter for the number of DRNG “generate” requests since the last reseed.
According to SP800-90A, the number of allowed requests before a forceful reseed
is 248 – a number that is very high. The ESDM uses a much more conservative
threshold of 220requests as a maximum. When that threshold is reached, the
DRBG will be reseeded by using the operation documented in section 2.11 before
the next DRNG “generate” operation commences.

The handling of the reseed threshold as well as the capping of the amount of
random numbers generated with one DRNG “generate” operation ensures that
the DRNG is operated compliant to all constraints in SP800-90A.

/dev/random and esdm_get_random_bytes_full The random numbers to
be generated for /dev/random as well as esdm_get_random_bytes_full are
defined to have a special property: it only provides data once at least 256 bits
of entropy have been collected by the ESDM. In addition, the ESDM must be
fully initialized before random numbers are generated, including the completion
of the SP800-90B heath test if entropy from internal entropy sources is gathered.

2.12.2 ChaCha20 DRNG

If the SP800-90A DRBG is not desired, the ESDM can use a standalone C
implementations for ChaCha20 to provide a DRNG.

The ChaCha20 DRNG is implemented with the components discussed in the
following section. All of those components rest on a state defined by [1], section
2.3.

The operation of the ChaCha20 DRNG can be characterized with figure 2.9.
This figure outlines the initialization of the DRNG, its seeding using the state
update operation and the invocation of one generate operation that is requested
to obtain more than 512 bits of data.

33

constant
constant
constant
constant

key
key
key
key
key
key
key
key

counter
nonce
nonce
nonce

chacha20_
state

„Expand
32-byte k“

0

0

0

(Re)Seed

„Expand
32-byte k“

+(updates)

+(number
 of update

ops)

esdm_
chacha20_
init

ChaCha20
Output

Output Buffer

ChaCha20
State

„Expand
32-byte k“

+1

+1

ChaCha20
State

ChaCha20
Output

Backward Secrecy

C
ha

C
ha

20
 B

lo
ck

C
ha

C
ha

20
 U

pd
at

e

C
ha

C
ha

20
 B

lo
ck

One invocation of esdm_cc20_generate_helper

Figure 2.9: ChaCha20 DRNG Operation

State Update Function The state update function’s purpose is to update
the state of the ChaCha20 DRNG. That is achieved by

1. generating one output block of ChaCha20,

2. partition the generated ChaCha20 block into two key-sized chunks,

3. and XOR both chunks with the key part of the ChaCha20 state.

In addition, the nonce part of the state is incremented by one to ensure the
uniqueness requirement of [1] chapter 4.

Seeding Operation The seeding operation processes a seed of arbitrary lengths.
The seed is segmented into ChaCha20 key size chunks which are sequentially
processed by the following steps:

1. The key-size seed chunk is XORed into the ChaCha20 key location of the
state.

2. This operation is followed by invoking the state update function.

3. Repeat the previous steps for all unprocessed key-sized seed chunks.

If the last seed chunk is smaller than the ChaCha20 key size, only the available
bytes of the seed are XORed into the key location. This is logically equivalent
to padding the right side of the seed with zeroes until that block is equal in size
to the ChaCha20 key.

The invocation of the state update function is intended to eliminate any
potentially existing dependencies between the seed chunks.

34

Generate Operation The random numbers from the ChaCha20 DRNG are
the data stream produced by ChaCha20, i.e. without the final XOR of the
data stream with plaintext. Thus, the DRNG generate function simply invokes
the ChaCha20 to produce the data stream as often as needed to produce the
requested number of random bytes.

After the conclusion of the generate operation, the state update function is
invoked to ensure enhanced backward secrecy of the ChaCha20 state that was
used to generate the random numbers.

2.13 ESDM External Interfaces
The following ESDM interfaces are provided:

• ESDM library API: The API is documented in ‘esdm.h‘.

• ESDM server RPC API: The RPC API is documented in ‘esdm_rpc_client.h‘.

• /dev/random and /dev/urandom device files: See the Linux man page
random(4). In addition, when opening the /dev/random device with with
the O_SYNC flag, the DRNG is managed with prediction resistance en-
abled. When using /dev/random with O_SYNC, the ESDM API call of
esdm_get_entropy_bytes_pr is used to service the request. Therefore all
considerations outlined for this API apply to /dev/random and O_SYNC as
well.

• /proc/sys/kernel/random/* interfaces: See the Linux man page random(4).

• getrandom and getentropy APIs: See Linux man pages getrandom(2)
and getentropy(3). When getrandom(2) is invoked with the flag of
GRND_RANDOM, the ESDM API call of esdm_get_entropy_bytes_pr is
used to service the request. In addition when getrandom(2) is invoked
with GRND_SEED, the ESDM API call of esdm_get_seed is used to fulfill
the request.

2.14 ESDM Self-Tests
All cryptographic primitives are self-tested during the startup phase of the
ESDM.

2.15 ESDM Test Interfaces
During kernel compilation, the following interfaces may be enabled allowing
direct access to non-deterministic aspects. It is not advisable to enable these
interfaces for production systems. Yet, these interfaces are considered to be
protected against misuse by allowing only the root user to access them. In
addition, any data obtained through these interfaces is not used by the ESDM
to feed the entropy pool. Thus, even when leaving these interfaces enabled on
production systems, the impact on security is considered to be limited.

• Interrupt Entropy Source:

35

– The interface /sys/kernel/debug/esdm_testing/esdm_raw_hires
allows reading of the raw unconditioned noise data collected while
the read operation is in progress by providing the time stamps of the
events collected by the ESDM that otherwise are injected into the
entropy pool. When booting the kernel with the kernel command line
option esdm_testing.boot_raw_hires_test=1, the time stamps of
the first 1,024 events recorded by the ESDM are stored. The first
read of the esdm_raw_hires file after boot provides this data in this
case.

– The interface /sys/kernel/debug/esdm_testing/esdm_raw_jiffies
allows reading of the raw unconditioned Jiffies collected while the
read operation is in progress by providing the Jiffies values collected
by the ESDM that otherwise are injected into the entropy pool (if
no high-resolution time stamp is detected). When booting the kernel
with the kernel command line option esdm_testing.boot_raw_jiffies_test=1,
the time stamps of the first 1,024 events recorded by the ESDM are
stored. The first read of the esdm_raw_jiffies file after boot pro-
vides this data in this case.

– The interface /sys/kernel/debug/esdm_testing/esdm_raw_irq al-
lows reading of the raw unconditioned interrupt numbers collected
while the read operation is in progress by providing the interrupt
number values collected by the ESDM that otherwise are injected into
the entropy pool (if no high-resolution time stamp is detected) or into
the random32 PRNG external to the ESDM. When booting the ker-
nel with the kernel command line option esdm_testing.boot_raw_irq_test=1,
the time stamps of the first 1,024 events recorded by the ESDM are
stored. The first read of the esdm_raw_irq file after boot provides
this data in this case.

– The interface /sys/kernel/debug/esdm_testing/esdm_raw_irqflags
allows reading of the raw unconditioned interrupt flags collected while
the read operation is in progress by providing the interrupt flag values
collected by the ESDM that otherwise are injected into the entropy
pool (if no high-resolution time stamp is detected) or into the ran-
dom32 PRNG external to the ESDM. When booting the kernel with
the kernel command line option esdm_testing.boot_raw_irqflag_test=1,
the time stamps of the first 1,024 events recorded by the ESDM are
stored. The first read of the esdm_raw_irqflags file after boot pro-
vides this data in this case.

– The interface /sys/kernel/debug/esdm_testing/esdm_raw_retip
allows reading of the raw unconditioned return instruction pointer
collected while the read operation is in progress by providing the
instruction pointer 32 LSB values collected by the ESDM that other-
wise are injected into the entropy pool (if no high-resolution time
stamp is detected) or into the random32 PRNG external to the
ESDM. When booting the kernel with the kernel command line op-
tion esdm_testing.boot_raw_retip_test=1, the time stamps of
the first 1,024 events recorded by the ESDM are stored. The first
read of the esdm_raw_retip file after boot provides this data in this
case.

36

– The interface /sys/kernel/debug/esdm_testing/esdm_raw_regs al-
lows reading of the raw unconditioned interrupt register state col-
lected while the read operation is in progress by providing the se-
lected register 32 LSB values collected by the ESDM that otherwise
are injected into the entropy pool (if no high-resolution time stamp
is detected). When booting the kernel with the kernel command line
option esdm_testing.boot_raw_regs_test=1, the time stamps of
the first 1,024 events recorded by the ESDM are stored. The first
read of the esdm_raw_regs file after boot provides this data in this
case.

– The interface /sys/kernel/debug/esdm_testing/esdm_raw_array
allows reading of the raw noise data that has been stored in the per-
CPU collection pool collected while the read operation is in progress.
When booting the kernel with the kernel command line option esdm_testing.boot_raw_array=1,
the array content of the first 1,024 events recorded by the ESDM are
stored. The first read of the esdm_raw_array file after boot provides
this data in this case.

– The interface /sys/kernel/debug/esdm_testing/esdm_irq_perf al-
lows reading of the number of cycles used to process one interrupt
event. This allows measuring the performance impact of the ESDM
on the interrupt handler. When booting the kernel with the kernel
command line option esdm_testing.boot_irq_perf=1, the perfor-
mance data of the first 1,024 events recorded by the ESDM are stored.
The first read of the esdm_irq_perf file after boot provides this data
in this case.

• Scheduler Entropy Source:

– The interface /sys/kernel/debug/esdm_testing/esdm_raw_sched_hires
allows reading of the raw unconditioned noise data collected while
the read operation is in progress by providing the time stamps of the
events collected by the ESDM that otherwise are injected into the
entropy pool. When booting the kernel with the kernel command line
option esdm_testing.boot_raw_sched_hires_test=1, the time stamps
of the first 1,024 events recorded by the ESDM are stored. The first
read of the esdm_raw_sched_hires file after boot provides this data
in this case.

– The interface /sys/kernel/debug/esdm_testing/esdm_raw_sched_pid
allows reading of the PID value of the task that are about to be sched-
uled to collected while the read operation is in progress. The PID
values are extracted which are collected by the ESDM that otherwise
are injected into the entropy pool (if no high-resolution time stamp
is detected). When booting the kernel with the kernel command
line option esdm_testing.boot_raw_sched_pid_test=1, the time
stamps of the first 1,024 events recorded by the ESDM are stored.
The first read of the esdm_raw_sched_pid file after boot provides
this data in this case.

– The interface /sys/kernel/debug/esdm_testing/esdm_raw_starttime_pid
allows reading of the start time value of the task that are about to be

37

scheduled to collected while the read operation is in progress. The
start time values are extracted which are collected by the ESDM that
otherwise are injected into the entropy pool (if no high-resolution
time stamp is detected). When booting the kernel with the kernel
command line option esdm_testing.boot_raw_sched_starttime_test=1,
the time stamps of the first 1,024 events recorded by the ESDM are
stored. The first read of the esdm_raw_starttime_pid file after boot
provides this data in this case.

– The interface /sys/kernel/debug/esdm_testing/esdm_raw_nvcsw_pid
allows reading of the numbers of context switches of the task that
are about to be scheduled to collected while the read operation is in
progress. The context switch values are extracted which are collected
by the ESDM that otherwise are injected into the entropy pool (if
no high-resolution time stamp is detected). When booting the kernel
with the kernel command line option esdm_testing.boot_raw_sched_nvcsw_test=1,
the time stamps of the first 1,024 events recorded by the ESDM are
stored. The first read of the esdm_raw_nvcsw_pid file after boot
provides this data in this case.

– The interface /sys/kernel/debug/esdm_testing/esdm_sched_perf
allows reading of the number of cycles used to process one sched-
uler event. This allows measuring the performance impact of the
ESDM on the scheulder. When booting the kernel with the kernel
command line option esdm_testing.boot_sched_perf=1, the per-
formance data of the first 1,024 events recorded by the ESDM are
stored. The first read of the esdm_sched_perf file after boot provides
this data in this case.

The helper tool getrawentropy.c is provided to read the files and format the data
for post-processing.

3 Interrupt Entropy Source Assessment
This section documents the entropy assessment and the compliance with various
standards of the interrupt entropy source. All other entropy sources are treated
as black boxes by the ESDM and must therefore deliver their own entropy
assessment.

The entropy sources of the auxiliary pool, the Jitter RNG and the CPU-
based entropy source are all not related to the interrupt entropy source. Thus,
the combination of all those entropy sources is subject to the SP800-90C assess-
ment provided in section 5.1

3.1 Noise Source Behavior
The noise source component of an entropy source contains the non-deterministic,
entropy-producing activity. For the scheduler entropy source this is the timing
of the arrival of interrupts. The general behavior of the noise source can be char-
acterized by analyzing the time stamps of the arrival time. Before performing
this analysis, a recap of the noise source is important:

38

• When a scheduling event occurs, the ESDM obtains a high-resolution time
stamp. Technically it may be a cycle counter offered by the CPU that
produces the time stamp which is unrelated to time, but provides a fast-
moving counter.

• The time stamp is divided by the greatest common divisor (GCD) that is
calculated during boot time by using the first 100 time stamps.

• After the division with the GCD, the 8 least-significant bits of the time
stamp are used. The higher-order bits are discarded. These 8 bits are now
subject to post-processing via the collection pool, the entropy pool and
the DRNG.

Considering these static and never-changing steps, the noise source rests on
the gathering of the 8 bits from the last step. An analysis of the noise source
therefore focuses on these 8 bits. These 8 bits are subsequently referenced as
“raw noise source data”.

3.1.1 Distribution of Raw Data

If the noise source would operate perfectly, an equi-distribution of the raw noise
source data is to be expected. Various tests have been conducted on most major
CPUs as outlined in appendix C. Using the runtime data, a common pattern of
the raw noise source data emerges that can be seen with figure 3.1. This figure
uses the 1,000,000 traces of the raw noise source data from the IRQ entropy
source on the RISC-V, i.e. a system with less-then-average entropy rate.

Figure 3.1: RISC-V Raw Noise Source Data Distribution

Figure 3.1 shows the following characteristics:

• A histogram of the number of time stamps received for each of the 256
possible time stamp values is depicted.

39

• The 25% and 75% quartiles of the distribution are marked with the two
green lines. They are at the time stamp value of 63 and 192, respectively

• The mean of the distribution is marked with the red line which is 127.45.

• The median of the distribution is marked with the blue line at 128.

• The black line marks the distribution of the time stamps.

• The standard derivation is not depicted, but it is at 73.89.

• The variation coefficient is not shown in the figure, but it is 0.579801.

The figure together with the mentioned statistical values clearly shows that it
is close to an equi-distribution. This means that the raw noise source data for
an entropy source instance on a less-than-ideal hardware still exhibit a distri-
bution that is close to the expected entropy source for a perfect operation. The
distributions of most tested systems are always close to an equi-distribution as
shown with the table below.

To verify that the distribution is an equi-distribution, a Chi-Squared Goodness-
of-Fit test is applied. For the mentioned RISC-V system, the following values
are observed:

• Asymptotic significance P: 0.2343

• Degrees of freedom: 255

The degrees of freedom shows that indeed all 256 possible timing values are
covered. Applying an alpha of 5%, the Chi-Squared test indicates that the
observed data set is an equi-distribution.

With the table below, the statistical properties for the different tested sys-
tems are listed.

Test System 25%
Quar-

tile

Median Mean 75%
Quar-

tile

Std.
Deriv.

Var.
Coeff.

χ2 P χ2 DF

AMD Ryzen
5950X - 64-bit

KVM
environment

64 128 127.6 192 73.88 0.58 0.0523 255

AMD EPYC
Milan 7713 2
sockets 128
cores 8-way

NUMA

63 127 127.48 192 73.91 0.58 0.4458 255

ARMv7 rev 5 68 128 121.05 191 72.95 0.60 0 255
ARMv7 rev 5

(Freescale
i.MX53)4

63 128 127.52 192 74 0.58 0.4693 255

4USBArmory MK I

40

Test System 25%
Quar-

tile

Median Mean 75%
Quar-

tile

Std.
Deriv.

Var.
Coeff.

χ2 P χ2 DF

ARMv7 rev 5
(Freescale

i.MX6
Ultralite)5

63 127 127.15 191 73.96 0.58 0 255

ARM 64 bit
AppliedMicro

X-Gene
Mustang Board

63 128 127.54 192 73.94 0.58 0.7229 255

Intel Atom
Z530 – using

GUI

64 128 127.58 192 73.93 0.58 0.3181 255

Intel Sandy
Bridge Clang

Compile

62 125 125.86 187 73.24 0.58 0.9347 252

Intel i7 8565U
Whiskey Lake –

32-bit KVM
environment

64 128 127.53 192 73.91 0.58 0.2893 255

Intel i7 8565U
Whiskey Lake

63 127 127.37 191 73.86 0.58 0 255

Intel Xeon E7
4870 8 sockets

160 CPUs
8-way NUMA

64 127 127.44 191 73.89 0.58 0 255

Intel Xeon Gold
6234

64 126 126.75 190 73.88 0.58 0 1276

IBM POWER 8
LE 8286-42A

63 127 127.66 191 73.86 0.58 0 255

IBM POWER 7
BE 8202-E4C

64 128 130.07 192 73.96 0.57 0 255

IBM System Z
z13 (machine

2964)

56 120 118.27 184 73.58 0.62 0 235

IBM System Z
z15 (machine

8561)

58 122 124.3 192 73.54 0.59 0 239

MIPS Atheros
AR7241 rev 17

64 128 127.55 191 73.88 0.58 0.5646 255

MIPS Lantiq
34Kc V5.68

64 127 127.49 191 73.85 0.58 0 255

5USBArmory MK II
6Tested without GCD.
7Ubiquiti Nanostation M5 (xm)
8AVM Fritz Box 7490

41

Test System 25%
Quar-

tile

Median Mean 75%
Quar-

tile

Std.
Deriv.

Var.
Coeff.

χ2 P χ2 DF

Qualcomm
IPQ4019
ARMv79

63 127 127.4 191 73.9 0.58 0 255

SiFive HiFive
Unmatched
RISC-V U74

63 127 127.45 192 73.89 0.58 0.2343 255

The Chi-Squared asymptotic significance shows for some systems that an
equi-distribution is not applicable, i.e. when the χ2 P value is less than 0.05.
Yet, when considering the other statistical values, the actual distribution is
neither skewed nor otherwise loop-sided. When looking at the distribution, it
becomes evident that some time stamps have a higher likelihood than others
which hint to special properties of the system. This observation applies to
all measurements which do not follow an equi-distribution based on the Chi-
Squared Goodness-of-Fit test. This allows the conclusion that the min-entropy
estimates given in appendix C can be considered to illustrate the real entropy
rate.

For example, the distribution for the USB Armory Mark II system shown
with figure 3.2 indicates that all time stamp values divisible by 8 are only chosen
two-thirds as often as the rest.

Figure 3.2: USB Armory Mark II: Raw Noise Source Data

Another example is a specific ARMv7 system which contains a very periodic
timer interrupt. Figure 3.3 shows that the time stamp has a pattern but still ex-
hibits a distribution that does not contradict the expectation to deliver entropy

9AVM Fritz Box 7520

42

at the rate calculated in appendix C. In the worst case that the timer interrupt
only causes the raw noise source data which would exhibit a clear pattern, the
stuck health test would identify this pattern with the second discrete derivative
and disregards time stamp for entropy collection.

Figure 3.3: Periodic timer interrupt: Specific ARMv7 System Raw Noise Source
Data

A similar effect is visible on an IBM System Z z13 system shown with fig-
ure 3.4. Again, the shown pattern does not contradict the entropy rate calcu-
lated for this system in appendix C.

43

Figure 3.4: IBM System Z Raw Noise Source Data

3.1.2 Greatest Common Divisor Assessment

The behavior of the GCD application can be clearly seen with the following
figures and numbers obtained for an Intel Atom Z530 system whose GCD is 4.

Without the application of the GCD, the distribution of the time stamp is
given with figure 3.5

Figure 3.5: Without GCD - Raw Noise Source Data Distribution

Figure 3.5 shows the following characteristics:

44

• A histogram of the number of time stamps received for each of the 256
possible time stamp values is depicted.

• The 25% and 75% quartiles of the distribution are marked with the two
green lines. They are at the time stamp value of 63 and 188, respectively

• The mean of the distribution is marked with the red line which is 125.99.

• The median of the distribution is marked with the blue line at 128.

• The standard derivation is not depicted, but it is at 73.84.

• The variation coefficient is not shown in the figure, but it is 0.586089.

• χ2 P value for equi-distribution Goodness-of-Fit test: 0.4263

• χ2 degrees of freedom for equi-distribution Goodness-of-Fit test: 63

When applying the GCD, and obtaining a new measurement, the distribution
shown with figure 3.6 emerges:

Figure 3.6: With GCD - Raw Noise Source Data Distribution

Figure 3.6 shows the following characteristics:

• A histogram of the number of time stamps received for each of the 256
possible time stamp values is depicted.

• The 25% and 75% quartiles of the distribution are marked with the two
green lines. They are at the time stamp value of 64 and 192, respectively

• The mean of the distribution is marked with the red line which is 127.58.

• The median of the distribution is marked with the blue line at 124.

45

• The standard derivation is not depicted, but it is at 73.93.

• The variation coefficient is not shown in the figure, but it is 0.579468.

• χ2 P value for equi-distribution Goodness-of-Fit test: 0.3181

• χ2 degrees of freedom for equi-distribution Goodness-of-Fit test: 255

This shows that the application of the GCD removes the “unused” time stamp
values without changing the overall distribution.

3.1.3 Worst and Regular Case Distribution

The measurements shown in appendix C commonly are obtained by applying a
worst-case which triggers as much interrupts as possible in the shortest amount
of time.

To compare the distributions of the time stamp between the worst case and
a regular case of normal system use, the USB Armory mark I system was tested
twice with the following result values:

• Worst case

– 25% quartile: 64
– Median: 128
– Mean: 127.6
– 75% quartile: 192
– Standard derivation: 73.91
– Variation coefficient: 0.579221
– χ2 P value for equi-distribution Goodness-of-Fit test: 0.9445
– χ2 degrees of freedom for equi-distribution Goodness-of-Fit test: 255

• Regular case

– 25% quartile: 63
– Median: 128
– Mean: 127.52
– 75% quartile: 192
– Standard derivation: 74
– Variation coefficient: 0.580276
– χ2 P value for equi-distribution Goodness-of-Fit test: 0.4693
– χ2 degrees of freedom for equi-distribution Goodness-of-Fit test: 255

The values indicate no statistical significant difference allowing the conclusion
that both distributions are very similar.

3.2 FIPS 140-2 Compliance
FIPS 140-2 specifies entropy source compliance in FIPS 140-2 IG 7.18. This
section analyzes each requirement for compliance. The general requirement to
comply with SP800-90B [2] is analyzed in section 3.3.

46

3.2.1 FIPS 140-2 IG 7.18 Requirement For Statistical Testing

The ESDM is provided with the following testing tools:

• Raw Entropy Tests: The tests obtain the raw unconditioned and unpro-
cessed noise information and records it for analysis with the SP800-90B
non-IID statistical test tool. The test tool includes the gathering of raw
entropy for one execution run as well as for the restart tests required in
SP800-90B section 3.1.4. The tool adjusts the data to be processed by
the SP800-90B statistical test tool. The test tool provides the SP800-90B
minimum entropy values.

In particular the first test covers the test requirement of FIPS 140-2 IG 7.18.

3.2.2 FIPS 140-2 IG 7.18 Heuristic Analysis

FIPS 140-2 IG 7.18 requires a heuristic analysis compliant to SP800-90B section
3.2.2. The discussion of this SP800-90B requirement list is given in section 3.3.

3.2.3 FIPS 140-2 IG 7.18 Additional Comment 1

The first test referenced in section 3.2.1 covers this requirement.
The test collects the time stamps of interrupts as they are received by the

ESDM. Instead of having these interrupts processed by the ESDM to add them
to the entropy pool, they are sent to a user space application for storing them
to disk.

The collection of the interrupt data for the raw entropy testing is invoked
from the same code path that would otherwise add it to the ESDM entropy
pool. Thus, the test collects the exact same data that would otherwise have
been used by the ESDM as noise data. Thus, the testing does not alter the
ESDM processing.

However, the tester performing the test should observe the following caveat:
the raw entropy data obtained with the user space tool should be stored on
“disk space” that will not generate interrupts as otherwise the testing would
itself generate new interrupts and thus alter the measurement. For example, a
ramdisk can be used to store the raw entropy data while the test is ongoing. On
common Linux environments, the path /dev/shm is usually a ramdisk that can
readily be used as a target for storing the raw entropy data. If that partition is
non-existent, the tester should mount a ramdisk or use different backing store
that is guaranteed to not generate any interrupts when writing data to it.

3.2.4 FIPS 140-2 IG 7.18 Additional Comment 2

The lowest entropy yield is analyzed by gathering raw entropy data received
from interrupts that come in high frequency. In this case, the time stamps
would be close together where the variations and thus the entropy provided
with these time stamps would be limited.

The extreme case would be to send a flood of ICMP echo request messages
with a size of only one byte to the system under test from a neighboring system
that has a close proximity with very little network latency. Each ICMP request
would trigger an interrupt as it is processed by the network card. The most
extreme case can be achieved when executing the ESDM in a virtual machine

47

where the VMM host sends a ping flood to the virtual machine. In this case,
network latency would be reduced to a minimum. In the subsequent sections,
test results are shown which are generated with an ESDM executing in a virtual
machine where the host sends a flood of ICMP echo request messages to trigger
a worst case measurement.

The entropy is not considered to degrade when using the hardware within
the environmental constraints documented for the used CPU. The online health
tests are intended to detect entropy source degradation. In case of online health
test failures, section 2.6.2 explains the applied actions.

3.2.5 FIPS 140-2 IG 7.18 Additional Comment 3

The ESDM uses the following conditioning components:

• For collecting of entropy data from the entropy source, an approved mes-
sage digest operation is used.

• For reading the entropy pool and compressing the entropy data, the hash
operation is used. The security strength of the ESDM is the minimum of
the DRBG security strength and the security strength of the hash following
[2] section 3.1.5.1.1 table 1. All ciphers can be tested via ACVT.

3.2.6 FIPS 140-2 IG 7.18 Additional Comment 4

The restart test is covered by the first test documented in section 3.2.1.

3.2.7 FIPS 140-2 IG 7.18 Additional Comment 6

The entropy assessment usually shows this conclusion – tests performed on Intel
x86-based systems show the following conclusions:

The entropy rate for all devices validated with the raw entropy tests outlined
in section 3.2.1 show that the minimum entropy values are always above one
bit of entropy per four data bits. The data bits are the least significant bits of
the time stamp generated by the raw noise.

Assuming the worst case that all other bits in the time delta have no entropy,
that entropy value above one bit of entropy applies to one time stamp.

The ESDM continuously gathers time stamps to be combined with a hash
which is entropy preserving. The hash operation function providing data to the
DRNG gathers only as much bits as time stamps were received. For example,
if the ESDM only received 16 time stamps, the ESDM will only deliver 2 bytes
of data to the DRNG. This effectively implies that the ESDM assumes that one
bit of entropy is received per time stamp.

As the ESDM maintains an entropy pool, its entropy content cannot be larger
than the pool itself. Thus, the entropy content in the pool after collecting as
many time stamps as the entropy pool’s size in bits is the maximum amount
of entropy that can be held. Yet, as new time stamps are received, they are
mixed into the entropy pool. In case the entropy pool is considered to have fully
entropy, existing entropy is overwritten with new entropy.

This implies that the ESDM data generated from the entropy pool has (close
to) 1 bit of entropy per data bit.

48

3.2.8 FIPS 140-2 IG 7.18 Additional Comment 9

N/A as the raw entropy is a non-IID source and processed with the non-IID
SP800-90B statistical tests as documented in section 3.2.1.

3.3 SP800-90B Compliance
This chapter analyzes the compliance of the ESDM to the SP800-90B [2] stan-
dard considering the FIPS 140-2 implementation guidance 7.18 which alters
some of the requirements mandated by SP800-90B.

3.3.1 SP800-90B Section 3.1.1

The collection of raw data for the SP800-90B entropy testing documented in
section 3.2.1 uses 1,000,000 consecutive time stamps obtained in one execution
round.

The restart tests documented in section 3.2.1 perform 1,000 restarts collect-
ing 1,000 consecutive time stamps.

3.3.2 SP800-90B Section 3.1.2

The entropy assessment of the raw entropy data including the restart tests
follows the non-IID track.

3.3.3 SP800-90B Section 3.1.3

Please see section 3.2.7: The entropy of the raw noise source data is believed to
have more than one bit of entropy per time stamp to allow to conclude that one
output block of the ESDM has (close to) one bit of entropy per data bit. Yet,
this rate can be configured at compile time to be lower than one bit of entropy
per interrupt event.

The first test referenced in section 3.2.1 performs the following operations
to provide the SP800-90B minimum entropy estimate:

1. Gathering of the raw entropy data of the time stamps.

2. Obtaining the four least significant bits of each time stamp and concate-
nate them to form a bit stream.

3. The bit stream is processed with the SP800-90B entropy testing tool to
gather the minimum entropy.

For example, on an Intel Core i7 Skylake system executing the ESDM in a KVM
guest, the SP800-90B tool shows the following minimum entropy values when
multiplying the SP800-90B tool bit-wise minimum entropy by four since four
bits are processed: 3.452064.

3.3.4 SP800-90B Section 3.1.4

For the restart tests, the raw entropy data is collected for the first 1,000 interrupt
events received by the ESDM after a reboot of the operating system. That
means, for one collection of raw entropy the test system is rebooted. This

49

implies that for gathering the 1,000 restart samples, the test system is rebooted
1,000 times.

Each restart test round stores its time stamps in an individual file.
After all raw entropy data is gathered, a matrix is generated where each line

in the matrix lists the time stamp of one restart test round. The first column of
the matrix, for example, therefore contains the first time stamp for each boot
cycle of the Linux kernel with the ESDM.

The SP800-90B minimum entropy values column and row-wise is calculated
the same way as outlined above:

1. Gathering of the raw restart entropy data of the time stamps.

2. Obtaining the four least significant bits of each time stamp either row-wise
or column-wise and concatenate them to form a bit stream. There are
1,000 bit streams row-wise, and 1,000 bit streams column-wise boundary
generated.

3. The bit streams are processed with the SP800-90B entropy testing tool to
gather the minimum entropy.

In a following step, the sanity check outlined in SP800-90B section 3.1.4.3 is
applied to the restart test results. The steps given in 3.1.4.3 are applied.

For example, on an Intel Core i7 Skylake system executing the ESDM in a
KVM guest, the SP800-90B tool shows the following minimum entropy values
when multiplying the SP800-90B tool bit-wise minimum entropy by four since
eight bits are processed:

• Using the 8 least significant bits of the time stamps in column-wise assess-
ment – lowest entropy value of all 1,000 column entries: 3.455504

• Using the 8 least significant bits of the time stamps in row-wise assessment
– lowest entropy value of all 1,000 column entries: 3.393808

• Sanity check of the 1,000 x 1,000 matrix passes with value of one

With the shown values, the restart test validation passes according to SP800-
90B section 3.1.4.

3.3.5 SP800-90B Section 3.1.5

The conditioning component applied to the interrupt entropy source are per-
formed at different stages as outlined in section 2.1. Although the hashing
operation is used for different stages, the following discussion is applicable to
all use cases.

Truncation The truncation operation ensures that the entropy in that data
is at maximum the truncated hash.

The truncation of operation (1) listed in section 2.2 is not affected by the
capping of the entropy, because the quantitative measurement of the existing
entropy using the SP800-90B tool set is performed using that truncated input
data. The ESDM implies an entropy of 1 bit per truncated time stamp and
zero bits of entropy per arbitrary 32-bit word size which means that the entropy
present in the data is always smaller as the data size.

50

The truncation operation of step (6) listed in section 2.2 verifies that the
truncated data contains at most the amount of entropy as the generated data
size. The remaining part of the truncated data is not exported to any external
entity but remains in the per-CPU entropy pools - when new random data is
generated involving the entropy pools, the current entropy pool states are always
hashed. This is a deviation from SP800-90B section 3.1.5.1.2 which requires a
relative reduction of entropy. This statement is considered inconsistent with the
statement implied in table 1 [2] and therefore wrong depicted with the following
analogy: Assume to have a buffer of 512 bits of data having 256 bits of entropy.
When hashing it with SHA-512, the resulting message digest of 512 bits has 256
bits of entropy. When truncating the digest to 256 bits, SP800-90B states the
entropy is 128 bits. However, SP800-90B section 3.1.5.1.1 table 1 states that
full entropy is given to approved hash functions. Assume to use a SHA-512/256
which has a digest size of 256 bits and thus could transport 256 bits of entropy
following table 1. This SHA-512/256 hash operation calculates a SHA-512 hash
truncated to 256 bits. Albeit the cryptographic operation of SHA-512/256 is
identical to the ESDM-applied truncation10, SP800-90B table 1 awards 256 bits
of entropy to SHA-512/256 but at the same time SP800-90B would apply only
128 bits to the ESDM-applied truncation. Due to this inconsistency, the ESDM
applies the entropy behavior implicitly specified in table 1, i.e. the entropy is
the minimum of the available entropy and the message digest size. Furthermore,
applying the Output_Entropy formula for a vetted conditioning component of
a truncated hash, the following calculation applies. This calculation shows the
entropy rate of a SHA-512 hash processing a buffer with 1024 bits that contains,
say, 384 bits of entropy and truncating it to 256 bits. This means, the formula
for houtSHA−512 trunc

= Output_EntropySHA−512 trunc(1024, 256, 512, 384) fol-
lowing [2] section 3.1.5.1.2 is calculated:

Phigh = 2−384

Plow = (1 − 2−384)
21024 − 1 ≈ 2−1024

n = min(256, 512) = 256

ψ = 21024−256 · 2−1024 + 2−384 = 2−256 + 2−384 ≈ 2−256

U = 21024−256 +
√

2 · 256 · (21024−256) · ln(2) = 2768 +
√

2777 · ln(2) ≈ 2768

ω = 2768 × 2−1024 = 2−256

Output_EntropySHA−512 trunc(1024, 256, 512, 384) = −log2(max(2−256, 2−256)) = 256

Even after calculating other entropy rates using the same formula, the fol-
lowing conclusion for the truncation can be applied:

Output_Entropytrunc(nin, nout, nw, hin) = min(nin, nout, nw, hin)

This function is applied by the ESDM for hash truncation.
10Depending on the runtime configuration the ESDM uses a hash of SHA-512 and fills a

buffer of the DRNG security strength size, i.e. 256 bits.

51

Concatenation When applying a concatenation operation, the ESDM simply
adds the entropy delivered with each data entry part.

Hash The input of the hash nin is fixed as it processes the existing per-CPU
entropy pool(s), auxiliary pool and the per-CPU collection pools.

The output of the hash nout is usually fixed to the message digest size. The
on exception is the output of the hash nout to provide the seed to the DRNG: it is
the minimum of either the digest size of the used hash or the amount of entropy
available in the processed entropy pools based on the number of “unprocessed”
time stamps held in the per-CPU entropy pools.

The following hashes are used for the hash function depending on the loaded
DRNG:

• ChaCha20: SHA-256 in normal case, SHA-1 if kernel is not compiled with
CONFIG_CRYPTO

• SP800-90A Hash DRBG: SHA-512

• SP800-90A HMAC DRBG: SHA-512

• SP800-90A CTR DRBG: SHA-512

In the following, the different hash operations specified in section 2.2 are applied
as follows:

• Compression of entropy delivered from the interrupt entropy source when
adding the entropy into the per-CPU entropy pools.

• Compression of entropy delivered from one or more ESDM-external en-
tropy sources when adding the entropy into the auxiliary pool.

• Compression of entropy delivered by the different per-CPU entropy pools
when “reading” the entropy pools.

The requirement of [2] section 3.1.6 states that when combining two or more
noise sources using a vetted conditioning component, only one noise source is
to be credited with entropy. This requirement is met as follows: according to
[2] section 2.2 a noise source is the phenomenon delivering entropy. The noise
source data is post-processed with conditioning components and health tests to
form an entropy source. Based on this statement, the collection of the per-CPU
entropy pools together form one entropy source that is compliant to SP800-90B.

Note, the reason for hashing the per-CPU entropy pools together with the
auxiliary pool is to ensure backward secrecy when calculating the next round of
random numbers used to fill the seed buffer used to seed the DRBG from the
entropy sources sources.

Approach for Calculating Entropy Although the aforementioned sections
explain that the input and output sizes may not be fixed, in regular operation
they are quasi-fixed. In order to reseed a DRNG, 256 bits of entropy are to
be generated from the noise source. Although the per-CPU collection pools
receive interrupt time stamps continuously, only the entropy from 256 time
stamps are required as illustrated below. Only when all per-CPU entropy pools
have received too little interrupt time stamps to satisfy the 256 bit entropy

52

request, less output data is generated. This commonly happens during boot or
at runtime when too much entropy is requested. Though, during boot time,
the DRNG will receive a (re)seed with 256 bits of entropy before the ESDM
is considered fully operational. Therefore, the prior boot-time (re)seed events
with less entropy may even be disregarded for the entropy assessment.

With the given combination of the hash as outlined above, the following
approach for the entropy calculation is taken for each of the data processing
steps outlined in section 2.2:

• Function 2.2:

– ninper−CP U pool
equals to 8,192 bits as the per-CPU entropy pool ob-

tains its input data from the collection pool that has a size of 8,192
bits (1,024 * 8 bits)11 .

– noutper−CP U pool
is the message digest size in bits.

– nwper−CP U pool is the message digest size in bits.

• Function 2.8:

– ninaux pool
equals to 512 bits as the auxiliary pool pool size is 512 bits

in size plus the provided input data.
– noutaux pool

is the message digest size in bits.
– nwaux pool is the message digest size in bits.

• Function 2.3:

– ninhash pools
equals to

∑max CP U
a=0 noutper−CP U poola

+ nouthash aux

– nouthash pools
is the message digest size in bits.

– nwhash pools is the message digest size in bits.

3.3.6 SP800-90B Section 3.1.5.1

The hash operation is either SHA-512, SHA-256, or SHA-1 as outlined above
is considered to be a vetted conditioning component. Thus the entropy rate of
the hash output is calculated as follows using the aforementioned variables for
the hash function. In addition, the following consideration applies:

• The entropy content of the input hinper−CP U pool
: The input entropy of the

hash used to process the per-CPU entropy pool is equal to the entropy
provided by the per-CPU collection pool and the entropy already present
in the per-CPU entropy pool considering that both data components are
hashed at the same time to form a new per-CPU entropy pool state. Of
course, the entropy held in the per-CPU entropy pool will never be larger
than the digest size of the used hash which is compliant to [2] section
3.1.5.1.1 table 1.

11Section ?? outlines that the ESDM collection size can be modified at compile time where
the default is 1,024. When a different collection size is chosen, the value needs to be adjusted
accordingly. Yet, such modified value has no impact to the entropy analysis.

53

• The entropy content of the input hinaux pool
: The input entropy of the

hash used to process the auxiliary pool is equal to the entropy provided
by the noise source and the already collected entropy in the auxiliary
pool considering that both data components are hashed at the same time
to form a new auxiliary pool state. Of course, the entropy held in the
auxiliary pool will never be larger than the digest size of the used hash
which is compliant to [2] section 3.1.5.1.1 table 1.

• The entropy content of the input hinhash pools
: The input entropy of the

hash used to process the entire entropy pool is equal to the entropy found
in all per-CPU entropy pools managed by the hash operation and the
auxiliary pool. Again, the entropy generated by the hash will never be
larger than the digest size of the used hash which is compliant to [2] section
3.1.5.1.1 table 1.

Function 2.2 Output_Entropy To perform a calculation of the Output_Entropy
of a conditioning component, the input entropy must be considered. The heuris-
tic input entropy awarded for one time stamp processed by the ESDM is given
in equation 3.2. Due to the concatenation operation of time stamps, the entropy
of multiple time stamps can be added.

For the function 2.2, the entropy when 1,024 time stamps are received is
houtSHA−512 = Output_EntropySHA−512(8192, 512, 512, 1024) following [2] sec-
tion 3.1.5.1.2. Therefore, the following calculation is applicable:

Phigh = 2−1024

Plow = (1 − 2−1024)
28192 − 1 ≈ 2−8192

n = min(512, 512) = 512

ψ = 28192−512 · 2−8192 + 2−1024 = 2−512 + 2−1024 ≈ 2−512

U = 28192−512 +
√

2 · 512 · (28192−512) · ln(2) = 27680 +
√

27690 · ln(2) ≈ 27680

ω = 27680 × 2−8192 = 2−512

Output_EntropySHA−512(8192, 512, 512, 1024) = −log2(max(2−512, 2−512)) = 512

As a complement, the same calculation is provided when only one time stamp
is received for the formula houtSHA−512 = Output_EntropySHA−512(8, 512, 512, 1)

Phigh = 2−1

Plow = (1 − 2−1)
28 − 1 ≈ 2−9

n = min(512, 512) = 512

ψ = 28−512 · 2−9 + 2−1 = 2−513 + 2−1 ≈ 2−1

54

U = 28−512+
√

2 · 512 · (28−512) · ln(2) = 2−504+
√

2−494 · ln(2) ≈ 2−247·
√
ln(2) ≈ 2−248

ω = 2−248 × 2−9 = 2−257

Output_EntropySHA−512(8, 512, 512, 1) = −log2(max(2−257, 2−1)) = 1
The calculation can be generalized with the following formula:

houtSHA−512 = Output_EntropySHA−512 = min(hin, noutSHA−512)

When using SHA-256, the same type of calculation can be provided. The
first set of formulas show the case when 1,024 time stamps are received and thus
for houtSHA−256 = Output_EntropySHA−256(8192, 256, 256, 1024):

Phigh = 2−1024

Plow = (1 − 2−1024)
28192 − 1 ≈ 2−8192

n = min(256, 256) = 256

ψ = 28192−256 · 2−8192 + 2−1024 = 2−256 + 2−1024 ≈ 2−256

U = 28192−256 +
√

2 · 256 · (28192−256) · ln(2) = 27936 +
√

27945 · ln(2) ≈ 27936

ω = 27936 × 2−8192 = 2−256

Output_EntropySHA−256(8192, 256, 256, 1024) = −log2(max(2−256, 2−256)) = 256
As a complement, the same calculation is provided when only one time stamp

is received for the formula houtSHA−512 = Output_EntropySHA−256(8, 256, 256, 1)

Phigh = 2−1

Plow = (1 − 2−1)
28 − 1 ≈ 2−9

n = min(256, 256) = 256

ψ = 28−256 · 2−9 + 2−1 = 2−257 + 2−1 ≈ 2−1

U = 28−256+
√

2 · 256 · (28−256) · ln(2) = 2−248+
√

2−239 · ln(2) ≈ 2−120·
√
ln(2) ≈ 2−121

ω = 2−121 × 2−9 = 2−130

Output_EntropySHA−256(8, 256, 256, 1) = −log2(max(2−130, 2−1)) = 1
Again, the calculation can be generalized with the following formula:

houtSHA−256 = Output_EntropySHA−256 = min(hin, noutSHA−256)

Comparing the conclusions for SHA-512 and SHA-256, both allow to draw
the general conclusion that underlies the entire entropy assessment and therefore
data entropy management applied by the ESDM for all vetted conditioning
operations:

houtvetted
= Output_Entropyvetted = min(hin, noutvetted

) (3.1)

55

Function 2.8 The function 2.8 uses the same hash operation as the discussed
in the preceding section. Thus, the conclusion drawn with equation 3.1 applies
here as well.

Function 2.3 The function 2.3 uses the same hash operation as the discussed
in the preceding section. Thus, the conclusion drawn with equation 3.1 applies
here as well.

Conclusions for Output_Entropy As stated in [2] section 3.1.5.1.2, vet-
ted conditioning components are allowed to claim full entropy. In case of full
entropy, the following is applied which matches exactly analysis and conclusion
of equation 3.1:

• houtSHA−512 = min(hin, noutSHA−512),

• houtSHA−256 = min(hin, noutSHA−256), or

• houtSHA−1 = min(hin, noutSHA−160).

Based on that conclusion, the entropy rate for each processing step given in
section 2.2 can be illustrated in the following. This entropy assessment uses
nout which depends on the chosen hash operation with the respective value
listed above for the chosen hash.

Heuristic Entropy Assessment The heuristic entropy value for the indi-
vidual time stamps is defined with the following equation applicable when a
high-resolution timer is present – the absence of a high-resolution timer auto-
matically implies the ESDM is treated as non-compliant to SP800-90B:

ht8 = ht32 = 1 (3.2)

Note, in order to assess whether the ESDM heuristic entropy value is ap-
propriate, it must be compared with the entropy analysis result received from
practical measurements such as outlined in sections 3.3.3 and 3.3.4. This com-
parison must show that the heuristic entropy value is always lower and thus
more conservative than what the measurements show on target devices.

The entropy present in the arbitrary 32 bit word that may be added to the
per-CPU collection pool is defined with:

ha32 = 0 (3.3)

The entropy in the concatenated time stamps found in the interrupt as
well as scheduler per-CPU collection pool is calculated as the sum of all time
stamps (truncated or not) present in the interrupt as well as scheduler per-
CPU collection pool of 1,024 bytes per default – if a different collection pool
size is used, the right-hand value of the following equation must be adjusted
accordingly:

hper−CP U CP = min(
number time stamps∑

n=0
(ht{8,32})n, 1024) (3.4)

56

For the maintenance of the interrupt per-CPU entropy pool as specified by
equation 2.2, the following entropy rate applies when continuous compression
support is enabled. This formula implies that each output of the interrupt
per-CPU entropy pool holds the sum of the entropy of the received per-CPU
collection pool since last generation of the per-CPU output data and the entropy
remained in the per-CPU entropy pool capped by the message digest size. This
operation implies that the used hash compresses of the entropy available in the
different input data.

hper−CP U pooln = min(
m=n−1∑

m=0
hper−CP U CPm + hper−CP U pooln−1 , nout) (3.5)

When continuous compression support is disabled as well as for the scheduler-
based entropy source, the per-CPU entropy pool maintenance specified by equa-
tion 2.2 shows the following entropy rate. The formula implies that the max-
imum amount of entropy that can be held depends on the size of the collec-
tion pool depicted with equation 2.1 since additional entropy received by the
collection pool overwrites old entropy data. The collection pool can hold the
maximum amount of entropy event data as defined with its size. After convert-
ing the number of received entropy event data into an entropy statement using
equation 3.2, the maximum amount of entropy held in the collection pool is
available.

hper−CP U pooln = min(hper−CP U CP n + hper−CP U pooln−1 , nout) (3.6)

Similarly, the following equation applies to the entropy of the auxiliary pool
maintenance as specified by equation 2.8. Note, although this entropy source
is not considered to be modeled in this chapter, the formula is still provided
illustrating the use of a vetted conditioning component. This formula implies
that auxiliary pool holds the sum of the entropy of the received data capped
by the message digest size. Again, this operation implies that the used hash
compresses the entropy available in the different input data.

haux pool = min(hinaux pool
+ haux pool, nout) (3.7)

The following equation applies when calculating the interrupt and scheduler-
based entropy source output buffer before its truncation as specified by equa-
tion 2.3. The formula implies that the interrupt entropy source buffer before
truncation holds the sum of the entropy of all per-CPU entropy pools plus the
auxiliary pool capped by the message digest size. Again, this operation implies
that the used hash compresses the entropy available in the different input data.

hhash pools = min(
max CP U∑

c=0
hper−CP U poolc

, nout) (3.8)

The entropy present in the truncated interrupt and scheduler-based entropy
source buffer is the minimum of the entropy found in the pools and the requested
amount of bits which is equal to the security strength of the DRBG:

requested sizes = security strength = 256 (3.9)

57

hs = min(hhash pools, requested sizes) (3.10)

The entropy of the temporary seed buffer following equation 3.1 is simply
an addition of the entropy values credited for each of the entropy source with
hA denominating the auxiliary entropy entropy rate, hE references the IRQ ES
entropy rate, , hS references the scheduler ES entropy rate, , hJ covers the Jitter
RNG ES entropy rate, hC references the CPU ES entropy rate, hK references
the kernel ES entropy rate, and hH denominates the HWRAND entropy source:

hT = hA + hE + hS + hJ + hC + hK + hH (3.11)

The result of the formulas show that the entropy is simply a sum of the
entropy of all input events capped to the message digest size of the used hash
operation.

When generating the random numbers filling the interrupt entropy source
buffer, the entropy is debited in the following steps. First the entropy estimator
of the auxiliary pool is reduced as much as possible: either by hs or at most
to zero. If not all entropy of hs could have been debited from the auxiliary
pool entropy estimator, then the yet not debited part of hs is debited from the
per-CPU entropy pool entropy estimators.

For example, assume that after the generation of random numbers and filling
the slow noise source buffer its entropy is hs = 256. Assume further, the per-
CPU entropy pools of the assumed 2 CPUs contain hper−CP U poolCP U0 = 185
and hper−CP U poolCP U1 = 123. The debit operation performs:

1. hper−CP U poolCP U0 = 185 − 185 = 0 leaving hsnot debited
= 256 − 185 = 71

2. hper−CP U poolCP U1 = 123 − 71 = 52

3.3.7 SP800-90B Section 3.1.6

The ESDM uses the following noise sources for the interrupt entropy source:

• The noise source of the timing of the occurrence of interrupts. The entire
SP800-90B analysis covers this one noise source. Thus, the requirements
in this section for the interrupt noise source are trivially met.

• Auxiliary data delivered as part of interrupts: HID event data. This data
is concatenated with the interrupt time stamps into the collection pool.
Yet it is always credited with zero bits of entropy.

All data is processed by the vetted conditioning component of the hash before
it is injected as seed data into the DRNG. Thus, this operation complies with
the last paragraph of section 3.1.6.

3.3.8 SP800-90B Section 3.2.1 Requirement 1

This entire document is intended to provide the required analysis.

3.3.9 SP800-90B Section 3.2.1 Requirement 2

This entire document in general and chapter 3 in particular is intended to pro-
vide the required analysis.

58

3.3.10 SP800-90B Section 3.2.1 Requirement 3

There is no specific operating condition other than what is needed for the op-
erating system to run since the noise source is a complete software-based noise
source.

The only dependency the noise source has is a high-resolution timer which
does not change depending on the environmental conditions.

3.3.11 SP800-90B Section 3.2.1 Requirement 4

This document explains the architectural security boundary.
The boundary of the implementation is the source code files provided as part

of the software delivery. This source code contains API calls which are to be
used by entities using the ESDM.

3.3.12 SP800-90B Section 3.2.1 Requirement 5

The per-CPU entropy pools as processed by the hash is the output of the inter-
rupt noise source. I.e. the entropy pools maintained by the hashing operation
holds the data that is given to the DRNG when requesting seeding.

The noise source output without the hashing operation is accessed with
specific tools which add interfaces that are not present and thus not usable when
employing the ESDM in production mode. These additional interfaces are used
for gathering the data used for the analysis documented in section 3.3.3. These
interfaces perform the following operation:

1. Switch the ESDM into raw entropy generation mode. This implies that
each raw entropy event is fed to the raw entropy collection interface and
not processed by the per-CPU collection pool or otherwise used.

2. When an interrupt event is received, forward the time stamp holding the
entropy to a ring buffer. This operation is performed repeatedly until the
ring buffer is full or the user space application read that ring buffer.

3. When an application requests the reading of the ring buffer, the data is
extracted from the kernel and the ring buffer is cleared.

With this approach, the actual interrupt events which would be processed by
the ESDM are obtained.

The kernel interface is only present if the kernel is compiled with the option
CONFIG_ESDM_RAW_HIRES_ENTROPY. This option should not be set in production
kernels.

3.3.13 SP800-90B Section 3.2.1 Requirement 6

Please see section 3.2.3 for details how and why the raw entropy extraction does
not substantially alter the noise source behavior.

3.3.14 SP800-90B Section 3.2.1 Requirement 7

See section 3.3.4 for a description of the restart test.

59

3.3.15 SP800-90B Section 3.2.2 Requirement 1

This entire document provides the complete discussion of the noise source.

3.3.16 SP800-90B Section 3.2.2 Requirement 2

The noise source is based on the receipt of interrupts. The receipt of interrupts
follows the usage of the system. The more I/O is performed with the system, the
more interrupts are received by the ESDM. The entropy rate only is a function
of the received I/O events and the timer and does not depend on any other
system property such as physical characteristics (e.g. temperature variations
or voltage/current variations). This finding is consistent with the fact that the
noise source is a pure software-based noise source which relies on the presence of
a high-resolution timer. Note, the used timer is a cycle counter that increments
with a given rate.

3.3.17 SP800-90B Section 3.2.2 Requirement 3

See sections 3.3.6 for a discussion of the entropy provided by the interrupt noise
source.

A stochastic model is not provided.

3.3.18 SP800-90B Section 3.2.2 Requirement 4

The noise source is expected to execute in the kernel address space. This implies
that the operating system process isolation and memory separation guarantees
that adversaries cannot gain knowledge about the ESDM operation.

3.3.19 SP800-90B Section 3.2.2 Requirement 5

The output of the noise source is non-IID as it rests on the execution time of a
fixed set of CPU operations and instructions.

3.3.20 SP800-90B Section 3.2.2 Requirement 6

The noise source generates the data via the hash generation function as outlined
in section 3.3.5.

Although the hash commonly generates a fixed-length string, this string
length may be reduced by the amount of available entropy as outlined in sec-
tion 3.3.6.

3.3.21 SP800-90B Section 3.2.2 Requirement 7

N/A as no additional noise source is implemented with the interrupt entropy
source.

Though, the ESDM employs complete self-contained other entropy sources
which may be compliant to SP800-90B by itself. To seed the DRNG maintained
by the ESDM, the output of all entropy sources are concatenated compliant to
SP800-90C as outlined in section 5.1.

60

3.3.22 SP800-90B Section 3.2.3 Requirement 1

The conditioning component is the hash operation. See section 3.3.5 for a
discussion of the input and output sizes.

3.3.23 SP800-90B Section 3.2.3 Requirement 2

The used hash implementations for the conditioning components functions are
all ACVP-testable. The ESDM offers an ACVP interface to ensure also the
built-in SHA-256 and SHA-1 implementations are testable.

3.3.24 SP800-90B Section 3.2.3 Requirement 3

For the defined hashes, no key is required.

3.3.25 SP800-90B Section 3.2.3 Requirement 4

For the defined hashes, no key is required.

3.3.26 SP800-90B Section 3.2.3 Requirement 5

The conditioning component is the hash operation. See section 3.3.6 for a
discussion of the narrowest internal width and the output block size.

3.3.27 SP800-90B Section 3.2.4 Requirement 1

Test tools for measuring raw entropy are provided at the ESDM web page.
These tools can be used by everybody without further knowledge of the ESDM.

3.3.28 SP800-90B Section 3.2.4 Requirement 2

The operation of the test tools for gathering raw data are discussed in sec-
tion 3.3.3. This explanation shows that the raw unconditioned data is obtained.

3.3.29 SP800-90B Section 3.2.4 Requirement 3

The provided tools for gathering raw entropy contains exact steps how to per-
form the tests. These steps do not require any knowledge of the noise source.

3.3.30 SP800-90B Section 3.2.4 Requirement 4

The raw entropy tools can be executed on the same environment that hosts the
ESDM. Thus, the data is generated under normal operating conditions.

3.3.31 SP800-90B Section 3.2.4 Requirement 5

The raw entropy tools can be executed on the same environment that hosts the
ESDM. Thus, the data is generated on the same hardware and operating system
that executes the ESDM.

61

https://www.chronox.de/esdm

3.3.32 SP800-90B Section 3.2.4 Requirement 6

The test tools are publicly available at LRNG web page allowing the replication
of any raw entropy measurements.

3.3.33 SP800-90B Section 3.2.4 Requirement 7

Please see section 3.2.3 for details how and why the raw entropy extraction does
not substantially alter the noise source behavior.

3.3.34 SP800-90B Section 4.3 Requirement 1

The implemented health tests comply with SP800-90B sections 4.4 as described
in section 3.3.43.

3.3.35 SP800-90B Section 4.3 Requirement 2

When either health test fails, the kernel:

• Emits a failure log,

• Resets the noise source, and

• Restarts the SP800-90B startup health tests.

This implies that no data is produced by the ESDM (including its DRNG) when
using the SP800-90B compliant external interfaces.

Both health test failures are considered permanent failures and thus trigger
a full reset.

3.3.36 SP800-90B Section 4.3 Requirement 3

The following false positive probability rates are applied:

• RCT: The false positive rate is α = 2−30 and therefore complies with the
recommended false positive probability.

• APT: The cut-off value is set to 325 compliant to SP800-90B section 4.4.2
for non-binary data at a significance level of α = 2−30 with time stamp is
assumed to at least provide one bit of entropy, i.e. H = 112.

3.3.37 SP800-90B Section 4.3 Requirement 4

The ESDM applies a startup health test of 1,024 noise source samples. Addi-
tional tests are applied. The collected noise source samples are re-used for the
generation of random numbers if the startup test was successful.

3.3.38 SP800-90B Section 4.3 Requirement 5

The noise source supports on-demand testing in the sense that the caller may
restart the kernel.

12Note, the referenced Excel function seems to be imprecise when calculating the value. The
data has been obtained using R-Project with the formula of 1 + qbinom(1 − 2−30, 512, 2−1).

62

https://www.chronox.de/lrng

3.3.39 SP800-90B Section 4.3 Requirement 6

The health tests are applied to the raw, unconditioned time stamp data di-
rectly obtained from the noise source before they are injected into the per-CPU
collection pool and further processed with the hash conditioning component.

3.3.40 SP800-90B Section 4.3 Requirement 7

The health tests are documented with section 2.6.2.
The tests are executed as follows:

• During startup, the RCT and the APT are applied to 1,024 samples. The
startup test can be triggered again when the caller reboots the kernel.

• At runtime, the RCT is applied to each received time stamp. The APT
collects 512 time stamps. The APT is calculated over all 512 time stamps.
If the test fails, the entire ESDM is reset to drop all existing entropy and
the startup testing is performed again.

3.3.41 SP800-90B Section 4.3 Requirement 8

There are no currently known suspected noise source failure modes.

3.3.42 SP800-90B Section 4.3 Requirement 9

N/A as the noise source is pure software. The software is expected to execute
on hardware operating in its defined nominal operating conditions.

3.3.43 SP800-90B Section 4.4

The health tests described in section 2.6.2 are applicable to cover the require-
ments of SP800-90B health tests.

The SP800-90B compliant health tests are implemented with the following
rationale:

RCT The Repetition Count Test implemented by the ESDM compares two
back-to-back time stamps to verify that they are not identical. If the
number of identical back-to-back time stamps reaches the cut-off value of
30, the RCT test raises a failure that is reported and causes a reset the
ESDM. The RCT uses the a cut-off value that is based on the following:
α = 2−30 compliant to FIPS 140-2 IG 9.8 and compliant to SP800-90B
which mandates this value to be in the range 2−20 ≤ α ≤ 2−40. In
addition, one time stamp is assumed to at least provide one bit of entropy,
i.e. H = 1. When applying these values to the formula given in SP800-90B
section 4.4.1, the cut-off value of 31 is calculated.
When the RCT passes, the counter is set to zero for the next time delta
to arrive. In mathematical terms, the verification of back-to-back values
being not identical is the calculation of the first discrete derivative of the
time stamp to show that it is not zero. In addition, the ESDM enhances
the RCT by calculating also the second and third discrete derivative of the
time stamp to be concatenated with the per-CPU collection pool. With
that, up to 8 consecutive time stamp values are assessed. All derivatives

63

must always be non-zero in order to pass the RCT. If one discrete deriva-
tive shows a zero, the RCT counter is increased. Thus, the addition of
the second and third derivative makes the RCT even more conservative.
Hence, the first discrete derivative is considered to be identical to the
“approved” RCT specified in SP800-90B section 4.4. In addition, linear
and exponential patterns are identified with the second and third discrete
derivative, respectively. As the additional pattern recognition do not in-
validate the mandatory pattern recognition, this RCT approach therefore
is considered to be an enhanced version of the “approved” RCT and thus
meets the requirement (a) of SP800-90B section 4.5.

APT The ESDM implements the Adaptive Proportion Test as defined in SP800-
90B section 4.4.2. As explained in other parts of the document, one time
stamp value is assumed to have (at least) one bit of entropy. Thus, the
cut-off value for the APT is 325 compliant to SP800-90B section 4.4.2
for non-binary data with a significance level of α = 2−30. The APT is
calculated using the four least significant bits of the time stamp. During
initialization of the APT, a time stamp is set as a base. All subsequent
time stamps are compared to the base time stamp. If both values are iden-
tical, the APT counter is increased by one. The window size for the APT
is 512 time stamps. The implementation therefore provides an “approved”
APT.

3.4 NIST Clarification Requests
In addition to complying with the requirements of FIPS 140-2 and SP800-90B,
NIST requests the clarification of the following questions.

3.4.1 Sensitivity of Interrupt Timing Measurements

The question that needs to be answered is whether the logic that measures the
interrupt timing is sensitive enough to pick up the variances of the interrupt
timing.

The sensitivity implies that timing variations are picked up and measured.
This is enforced by the stuck test enforced on each interrupt time stamp. That
stuck test requires that the first, second and third discrete derivative of the time
stamp must always be non-zero to accept that time stamp. Therefore, the time
stamp must vary for the received and processed interrupts which implies that
the ESDM health test ensures that the sensitivity of the time stamp mechanism
is sufficient.

3.4.2 Dependency Between Interrupt Timing Measurements

Another question that is raised by NIST asks for a rationale why there are no
dependencies between individual Jitter measurements.

The interrupts are always created by either explicit or implicit human ac-
tions. The ESDM measures the time stamp of the occurrence of these interrupts.
Thus, the ESDM measures the effects of operations triggered by human inter-
ventions. With the presence of a high-resolution time stamp that operates in the
nanosecond range and the assumption that only one bit of entropy is present in
one nanosecond time stamp of one interrupt event, the dependency discussion

64

therefore focuses on the one (or maybe up to four) least significant bit of the
nanosecond time stamp. With such high-resolution time stamps and considering
that only the least significant bit(s) is/are relevant for the ESDM, dependencies
are considered to be not present for these bits.

3.5 SP800-90B Compliant Configuration
In order to use the ESDM SP800-90B compliant, the following configurations
and settings must be made. These settings are cover requirements for the
compile-time options found in the ESDM meson configuration framework.

The following compile-time settings must be observed:

• fips140 must be enabled.

• es_irq must be enabled to enable the interrupt entropy source to which
the entropy discussion of this chapter applies to.

• Set the configuration option of es_irq_entropy_rate to the rate resulting
from the entropy assessment outlined in section 3.6.

• The ESDM Linux kernel module must be enabled and compiled as doc-
umented in addon/linux_esdm_es/README.md. The Makefile in this
directory must have the interrupt entropy source enabled.

The following requirements apply to the runtime configuration:

• The kernel must be booted with the kernel command line option of fips=1
to enable the SP800-90B health test.

To verify that the SP800-90B compliance is achieved, the file /proc/sys/kernel/random/esdm_type
or the esdm_rpcc_status RPC API call provides an appropriate status indica-
tor.

To achieve a compliant configuration to SP800-90A and SP800-90B, the
following requirements must be met:

• All requirements for SP800-90B documented in section 3.5 must be met.

• The ESDM compile time option drng_hash_drbg must be enabled which
provides the SP800-90A DRBG.

Only data obtained from the potentially blocking output interfaces of the ESDM
are SP800-90B compliant. If SP800-90C compliance is requested, these inter-
faces are also providing SP800-90C compliant output. Finally, the following
interfaces are DRG.3 compliant:

• /dev/random,

• getrandom system call invoked with a zero flag value,

• invoking the in-kernel esdm_get_random_bytes_full API,

• invoking the in-kernel esdm_get_random_bytes_pr API that provides ac-
cess to the DRBG operated with prediction resistance.

Any other interface is not considered to provide SP880-90B compliant data.

65

3.6 Reuse of SP800-90B Analysis
To reuse the SP800-90B analysis provided in this document the following steps
must be performed on the target platform:

1. Obtain raw noise data through the raw noise source interface on the in-
tended target platform as explained in section 3.3.3. The obtained raw
noise data must be processed by the SP800-90B tool to obtain an en-
tropy rate which must be above the entropy rate per time delta that is
configured with es_irq_entropy_rate: the entropy rate must be above
256/es_irq_entropy_rate.

2. Obtain the restart noise data through the raw noise source interface on
the intended target platform as explained in section 3.3.3. The obtained
raw noise data must be processed by the SP800-90B tool to verify:

(a) the sanity test to apply to the noise restart data must pass, and
(b) the minimum of the row-wise and column-wise entropy rate must not

be less than half of the entropy rate from measurement (1) and the
entropy assessment of the noise source based on the restart data must
be at least entropy rate per time stamp mentioned in (1).

If these steps are successfully mastered the user would now satisfy all SP800-90B
criteria and thus does not need to prepare his own SP800-90B analysis since the
document we discuss here covers all other aspects of the SP800-90B analysis.

The tool set provided as part of ESDM library code distribution provides
the measurements and validation tools.

4 Scheduler Entropy Source Assessment
TBD

5 ESDM Specific Configurations
The ESDM offers a secure and appropriate set of features with the default con-
figuration. Yet, use cases may arise where the ESDM should exhibit a different
behavior. The flexibility of the ESDM allows a various configurations that are
intended to meet different requirements.

5.1 SP800-90C Compliance
The specification of SP800-90C defines construction methods to design non-
deterministic as well as deterministic RNGs. As the specification is currently in
draft form, the latest available draft from January 21, 2021 is applied.

The specification defines different types of RNGs where the following map-
ping to the ESDM applies:

• The ESDM follows the construction of RBG2(NP) with the following en-
tropy sources whose outputs are concatenated:

66

– Auxiliary external entropy sources, such as user-space rngd, if avail-
able. The administrator is responsible to guarantee that this entropy
source is compliant to SP800-90B if it alters the entropy estimator
maintained by the ESDM via the RNDADDENTROPY IOCTL. Depending
on the selected entropy source, this may be a physical or non-physical
entropy source. Note, all data maintained by the auxiliary pool are
processed with a vetted conditioning component. Thus, to achieve
full SP800-90C compliance for such entropy sources, only one should
feed data credited with entropy into the auxiliary pool.

– Interrupt entropy source is the only entropy source that is fully main-
tained as part of the ESDM and is subject to a full entropy analysis
following section 3.3. Furthermore, it is claimed to be fully SP800-
90B compliant.

– Scheduler entropy source is the only entropy source that is fully main-
tained as part of the ESDM and is subject to a full entropy analysis
following 4. Furthermore, it is claimed to be fully SP800-90B com-
pliant.

– The Jitter RNG entropy source is used by the ESDM. This entropy
source is a fully self-contained SP800-90B entropy source. Its SP800-
90B compliance must be assessed separately. If SP800-90B compli-
ance cannot be demonstrated, it must be awarded to credit zero bits
of entropy with the configuration documented in section 2.8.1 or by
completely disabling it by not selecting the meson configuration op-
tion of es_jent.

– The CPU entropy source is used by the ESDM, if available. On In-
tel, this uses RDSEED. This entropy source is a fully self-contained
SP800-90B entropy source. Its SP800-90B compliance must be as-
sessed separately. If SP800-90B compliance cannot be demonstrated,
it must be awarded to credit zero bits of entropy with the configura-
tion documented in section 2.9.1 or by completely disabling it by not
selecting the meson configuration option of es_cpu.

– The Linux HWRAND entropy source is used by the ESDM, if avail-
able. Its SP800-90B compliance must be assessed separately. If
SP800-90B compliance cannot be demonstrated, it must be awarded
to credit zero bits of entropy with the configuration documented in
section 2.9.1 or by completely disabling it by not selecting the meson
configuration option of es_hwrand.

By applying Method 2 of section 3.3 in SP800-90C, the entropy provided
by all entropy sources can be added which is applied when the ESDM
constructs the temporary seed buffer as shown with equation 2.12.

• During instantiation of the DRBG, the ESDM tries to seed the DRBG
with at least (DRBG security strength) + 128 bits = 384 bits of entropy.
Only when this amount of entropy was obtained to seed the DRBG is
considered to be fully seeded and is allowed to produce output.
If the SP800-90C construction is to be used as the “randomness source”
following bullet 5 of section “Note to Reviewer” in the SP800-90C docu-
ment to seed another DRBG with a security strength of 256 bits, either

67

the hash DRBG should be used as they are capable of transporting up to
512 bits of entropy and are initially seeded with 384 bits of entropy. Thus,
the SP800-90C seeding requirement of providing 384 bits of entropy can
be satisfied.

• Reseeding of the DRBG can be triggered by either writing data into
/dev/random or by the RNDRESEEDCRNG IOCTL. The ESDM guarantees
that the reseed operation is only performed if at least 256 bits of entropy is
available if operated compliant to SP800-90C. If this is not available, the
reseed is attempted during the next generate operation. Yet, the generate
operation is conducted in any case. Nonwithstanding, the ESDM always
attempts to obtain 256 bits of entropy for reseeding. This is considered
appropriate because the upper limit when a reseed is ultimately triggered
is 220 generate operations or after 10 minutes, whatever is reached earlier.
If the DRNG cannot be reseeded it will continue to operate until the next
time this threshold is reached. The DRNG will revert to an unseeded
stage if it cannot be reseeded by the time it serviced 230 generate requests
since the last successful seeding operation.

The requirements from section 6.3 SP800-90C are met as follows:

1. The administrator must use the SP800-90A DRBG ESDM extension as
mentioned above to satisfy the requirement.

2. The DRBG can be ACVTS-tested to show compliance to SP800-90A. The
entropy sources are to be assessed pursuant to SP800-90B as outlined in
the above listing.

3. See the above listing for the reseeding support.

4. If an entropy source is not validated, its entropy estimation must be set
to zero as outlined in the above listing.

5. N/A as the ESDM is claimed to conform with RBG2(NP).

6. The entropy sources are listed above. By using concatenation of the output
of all entropy sources, the Method 2 SP800-90C is implemented. The
entropy of all entropy sources are added.

7. Technically it is possible that all DRBG security strengths can be chosen
as the DRBG supports all security strengths. Yet, the ESDM interfaces
currently only support the highest security strength of 256 bits to ensure
that it can be used for all use cases.

8. The entropy source output is destroyed immediately after it was used to
(re)seed the DRBG. Note, the use of the seed for backward secrecy by
injecting it into the auxiliary pool via the vetted conditioning operation is
considered to not violate the requirement as the seed data is unrecoverable.
Furthermore, the seed data is not credited with any entropy during the
backward secrecy operation. Therefore, the seed data is only used to
further mix the internal state of the ESDM.

9. N/A as the ESDM does not use a CTR DRBG without derivation function.

68

10. The ESDM attempts to instantiate a DRBG with 3/2s bits of entropy.
Only if this succeeds, the DRBG becomes available. The ESDM attempts
to reseed a DRBG with s bits of entropy. See the rationale above for the
discussion about the minimum entropy size of the reseeding operation of
128 bits.

11. The DRBG only provides output once it is fully seeded as mandated by
SP800-90C.

12. An error occurring in the interrupt entropy source triggers a full reset
of the ESDM as outlined in section 2.6.2. If the other entropy sources
are subject to a health test failures, SP800-90B mandates that they do
not produce entropy. Before the first initialization of the DRBG, it is
subject to a power-on self test. The ESDM performs power-up self tests
as outlined in section 2.14.

13. This requirement is implicitly met by the fact that the ESDM only pro-
vides DRBGs with the maximum security strength of 256 bits.

5.1.1 RBG2(P) Construction Method

It is possible to convert the ESDM into the SP800-90C type of RBG2(P). This
approach requires that only physical entropy sources are credited with entropy.
The following specific settings must be applied in addition to the general con-
figurations listed in the next section:

• Configure the interrupt entropy source to not credited entropy: compile
the ESDM with the kernel configuration option of es_irq_entropy_rate=0.
This setting ensures that the interrupt entropy source still collects data,
but it is not credited with entropy. If it shall be completely disabled, the
compile time option of es_irq must be unset.

• Configure the scheduler entropy source to not credited entropy: compile
the ESDM with the meson configuration option of es_sched_entropy_rate=0.
This setting ensures that the scheduler entropy source still collects data,
but it is not credited with entropy. If it shall be completely disabled, the
compile time option of es_sched must be unset.

• Configure the Jitter RNG entropy source to not credit entropy: compile
the ESDM with the meson configuration option of es_jent_entropy_rate=0.
If the value is set to 0, the entropy source still collects data, but it is not
credited with entropy. If it shall be completely disabled, the compile time
option of es_jent must be unset.

• Configure the kernel RNG entropy source to not credit entropy: compile
the ESDM with the meson configuration option of es_kernel_entropy_rate=0.
If the value is set to 0, the entropy source still collects data, but it is not
credited with entropy. If it shall be completely disabled, the compile time
option of es_kernel must be unset.

• Adjust the entropy rate of the CPU entropy source as needed: compile the
ESDM with the meson configuration option of es_cpu_entropy_rate=256
when full entropy is assumed to be provided by the CPU entropy source.

69

In general, set any value between 0 and 256 if the default value is not
appropriate. If the value is set to 0, still collects data, but it is not
credited with entropy. If it shall be completely disabled, the compile time
option of es_cpu must be unset.

• Adjust the entropy rate of the HWRAND entropy source as needed: com-
pile the ESDM with the meson configuration option of es_hwrand_entropy_rate=256
when full entropy is assumed to be provided by the configured HWRAND
entropy source. Ensure that the intended HWRAND entropy source is set
in /sys/devices/virtual/misc/hw_random/rng_current. In general, set
any value between 0 and 256 if the default value is not appropriate. If
the value is set to 0, still collects data, but it is not credited with entropy.
If it shall be completely disabled, the compile time option of es_hwrand
must be unset.

• If other hardware entropy sources are considered deliver entropy, they
may inject data into the ESDM via the IOCTL RNDADDENTROPY. Note,
only physical entropy sources must provide data that is credited with
entropy. Any other data fed into the ESDM via those interfaces must not
be credited with entropy.

Important note: The entropy rate provided by the CPU entropy source plus
all other physical entropy sources together must ensure they provide sufficient
entropy. “Sufficient entropy” is provided when the entropy rate equals the hash
type used by the ESDM. Considering the default message digest of SHA2-512,
512 bits of entropy should be provided.

Naturally, the hardware entropy sources that are credited with entropy must
be compliant to SP800-90B.

In case the RBG2(P) construction method is achieved, the following addi-
tional requirement from section 6.3 SP800-90C is met:

• Requirement 5: With the required configuration mentioned before the
ESDM will only count the physical entropy sources towards fulfilling the
requested amount of entropy.

5.1.2 SP800-90C Compliant Configuration

SP800-90C compliance is only achieved when all of the following settings are
achieved.

The following compile-time settings must be observed:

• The meson configuration option sp80090c is set. This option guarantees
the following:

– The final conditioning operation applied to the interrupt entropy
source as well as to the auxiliary pool require 64 additional bits of
entropy when obtaining data for the temporary seed buffer. This
complies with the requirement specified in section 4.3.2 SP800-90C
about vetted conditioning components. This ensures the conditioning
components provide full entropy.

– When the DRNG is initially seeded, it is attempted to be seeded
with 384 bits of entropy at least. This complies with the requirement

70

specified in section 6.2.1 bullet 2 of SP800-90C requiring 3/2s bits
of entropy for the initial seeding. Note, the ESDM applies a step-
wise seeding of 32, 128 and 256 bits of entropy during initialization.
When the final step of 256 bits is to be performed, the ESDM will
guarantee that at least 384 bits of entropy are collectively pulled
from all entropy sources. Only if this is achieved, the SP800-90C
compliant-marked interfaces of the ESDM specified in section 2.6.2
will produce random numbers.

• Enable es_irq to use the interrupt entropy source compliant to SP800-90B
as outlined in section 3.5 if the interrupt entropy source is considered to
be compliant to SP800-90B by accepting the assessment in chapter 3 and
by applying the testing of the entropy source as outlined in section 3.6 on
the target system. This also requires the compilation of the ESDM Linux
kernel module documented in addon/linux_esdm_es/README.md.

• Enable es_sched configure the scheduler entropy source compliant to
SP800-90B as outlined in section 4 if the scheduler entropy source is con-
sidered to be compliant to SP800-90B by accepting the assessment in
chapter 4 and by applying the testing of the entropy source as outlined in
this chapter on the target system. This also requires the compilation of the
ESDM Linux kernel module documented in addon/linux_esdm_es/README.md.

• The ESDM must be compiled with the meson configuration option of
es_cpu_entropy_rate=0 or unset the option es_cpu unless the CPU-
based entropy source (e.g. RDSEED on Intel) has an SP800-90B compliant
entropy assessment and comply with all requirements from SP800-90B.

• The ESDM must be compiled with the meson configuration option of
es_hwrand_entropy_rate=0 or unset the option es_hwrand unless the
HWRAND entropy source has an SP800-90B compliant entropy assess-
ment and comply with all requirements from SP800-90B.

• The ESDM must be compiled with the kernel configuration option of
es_jent_entropy_rate=0 or unset the option es_jent unless the Jit-
ter RNG entropy source has an SP800-90B compliant entropy assessment
and comply with all requirements from SP800-90B13.

The following requirements apply to the runtime configuration:

• Filling up the ESDM with entropy using either a user-space RNGD via
the IOCTL RNDADDENTROPY is allowed. However, the caller is only allowed
to claim entropy associated with the data and thus increase the ESDM
entropy estimation if the entropy source is SP800-90B compliant with its
own entropy assessment.

To verify that the SP800-90C compliance is achieved, the file /proc/sys/kernel/random/esdm_type
provides an appropriate status indicator. The SP800-90C compliant is ensured
only for the respectively marked ESDM interfaces specified in section 2.6.2. All
other interfaces are not providing SP800-90C compliant random numbers.

13At the time of writing, the user space Jitter RNG is SP800-90B compliant. Patches
ensuring the in-kernel variant is SP800-90B compliant as well when into the kernel for version
5.8.

71

It is permissible to use the ESDM DRBG output to seed another DRBG
when using the prediction resistance esdm_rpcc_get_random_bytes_pr RPC
API call, using getrandom(2) with the GRND_RANDOM flag, or opening /dev/random
with the O_SYNC flag. See the details given for the API call esdm_get_entropy_bytes_pr
in section 3.

5.1.3 FIPS 140 Compliant Configuration

FIPS 140 compliance is only achieved when all of the following settings are
achieved.

The following compile-time settings must be observed:

• The meson configuration option fips140 is set. This option guarantees
the following:

– The option sp80090c is automatically enabled.
– Power-on self tests are performed

The following requirements apply to the runtime configuration:

• The ESDM along with the scheduler and/or interrupt ES must be op-
erated in FIPS mode to ensure the oversampling for the conditioning
and the initial seeding of the DRBG is applied. This is achieved with
the kernel command line option of fips=1, or the environment variable
ESDM_SERVER_FORCE_FIPS is set when starting the ESDM server.

5.2 AIS 20 / 31
The German BSI defines construction methods of RNGs with AIS 20/31 with
the revision from 2011. In particular, this document defines different classes
of RNGs where the ESDM is capable of meeting class NTG.1. The NTG.1
compliance is achieved when using /dev/random with the O_SYNC flag during
opening, by using getrandom(2) with the GRND_RANDOM flag, or by using the
esdm_rpcc_get_random_bytes_pr RPC API call.

The NTG.1 from AIS 20/31 of 2011 requirements are met as follows:

• NTG.1.1: The ESDM offers interfaces to collect raw unconditioned en-
tropy as outlined in section 2.15.

• NTG.1.2: The ESDM maintains an entropy estimator for the auxiliary
pool as well as each entropy pool. The credit operation of the ESDM is
documented in section 2.1. To outline the debit operation section 3.3.6
provides several examples showing the approach. For each of the fast
entropy sources, the ESDM obtains the entropy estimate when fetching
data from them and applies this estimate when seeding the DRNG.

• NTG.1.3: The ESDM provides a compile-time switchable DRNG support
using an SP800-90A Hash DRBG with a SHA-512 core. Furthermore,
the ESDM allows using a ChaCha20-based DRNG which is documented
in section 2.12.2. All those DRNGs are characterized as DRG.3 since
they all support backward secrecy and use contemporary cryptographic
primitives for the state transition as well as output generation.

72

• NTG.1.4: Due to the blocking behavior and only returning as many bits
of data as entropy is available via /dev/random opened with O_SYNC, or
getrandom(2) with the flag GRND_RANDOM the ESDM meets the require-
ment.

• NTG.1.5: The output functions of the offered DRNGs are all based on
contemporary cryptographic primitives. Therefore, the output is assumed
that it cannot be distinguished from random number output sequences of
an ideal RNG. This is supported by the fact that the SP800-90A DRBGs
are successfully passing the NIST CAVP test suite. The ChaCha20 DRNG
can be tested using the ChaCha20 DRNG stand-alone implementation
which is derived from the ESDM implementation. The tester can verify
that both operate identical because the power-on self test in the stand-
alone ChaCha20 DRNG implementation is identical to the ESDM power-
up self test found in ESDM_selftest.c.

• NTG.1.6: Using the entropy analysis tools such as the NIST SP800-90B
test tools, results shown in appendix C can be obtained for the interrupt
entropy source. For the second entropy source, such assessment must
be performed as well. For example, the Jitter RNG is provided with a
complete independent entropy assessment. When comparing the results
with the heuristic entropy estimate, it is clear that the ESDM collects more
entropy than it credits. Further, considering the mathematical operations
processing the raw entropy data outlined in section 3.3.5, the processing
is considered to not destroy entropy.

5.2.1 NTG.1 (AIS 20/31 2011) Compliant Configuration

To achieve NTG.1 compliant operation, the following configuration must be
applied. It is permissible to use the configuration in parallel with the SP800-
90B and SP800-90C configurations.

The following compile-time settings must be observed:

• None.

The following requirements apply to the runtime configuration:

• The caller must use /dev/random and open it with O_SYNC, the getrandom(2)
API call with the flag GRND_RANDOM, or the esdm_rpcc_get_random_bytes_pr
RPC API call is used.

To verify that the NTG.1 compliance is achieved, the file /proc/sys/kernel/random/esdm_type
provides an appropriate status indicator. The NTG.1 compliant is ensured only
for the respectively marked ESDM interfaces specified in section 3.5. All other
interfaces are not providing NTG.1 compliant random numbers.

5.2.2 NTG.1 (AIS 20/31 2022) Compliant Configuration

To achieve NTG.1 compliant operation, the following configuration must be
applied. It is permissible to use the configuration in parallel with the SP800-
90B and SP800-90C configurations.

The following compile-time settings must be observed for AIS 20/31 (2022):

73

https://www.chronox.de/chacha20_drng.html
http://www.chronox.de/jent.html

• The ESDM compile time option of ais2031 must be enabled.

• The ESDM must have access to two entropy sources which are capable
of delivering 220 bits of entropy each. For example, the interrupt en-
tropy source can deliver 220 bits of entropy unless being operated with
SHA-1 on old Linux kernels (see section 2.2 for details on SHA-1). In
addition, the Jitter RNG entropy source is capable of delivering 220 bits
of entropy when booting the kernel with the kernel compile-time option
of es_jent_entropy_rate=220 or a larger value. See section 2.8.1 for
details on the Jitter RNG entropy rate.

The following requirements apply to the runtime configuration:

• None.

To verify that the NTG.1 compliance is achieved, the file /proc/sys/kernel/random/esdm_type
provides an appropriate status indicator. The NTG.1 compliant is ensured only
for the respectively marked ESDM interfaces specified in section 3.5. All other
interfaces are not providing NTG.1 compliant random numbers.

5.2.3 DRG.4 / PTG.3 Compliant Configuration

The ESDM allows a configuration that would make the ESDM compliant to the
requirements of a DRG.4 as well as a PTG.3. This is achieved by deconfiguring
all entropy sources except one that provides the data from a PTG.2 entropy
source. For example, an rngd can be created having access to a smart card that
is provides a PTG.2 entropy source. In this case, all other entropy sources must
be deactivated using the following runtime configuration.

The PTG.3 naturally can only be claimed if the PTG.2 entropy source is
part of the validation. If the PTG.2 entropy source is not part of the validation,
a DRG.4 must be claimed instead.

For achieving such compliance claim, the following compile-time configura-
tion must be applied:

• The kernel command line must contain the following setting to ensure the
interrupt entropy source is not credited with entropy: es_irq_entropy_rate=0.

• Configure the Jitter RNG entropy source to not credit entropy: boot the
kernel with the ESDM compile-time option of es_jent_entropy_rate=0.
If the value is set to 0, the entropy source is disabled.

• Adjust the entropy rate of the CPU entropy source to zero: boot the kernel
with the ESDM compile-time option of es_cpu_entropy_rate=0. If the
value is set to 0, the entropy source is disabled.

• Adjust the entropy rate of the HWRAND entropy source to zero: boot the
kernel with the ESDM compile-time option of es_hwrand_entropy_rate=0.
If the value is set to 0, the entropy source is disabled.

The following requirements apply to the runtime configuration:

• The PTG.2 entropy source delivers its entropy to the ESDM via either
the esdm_rpcc_rnd_add_entropy RPC API call or via the /dev/random
IOCTL RNDADDENTROPY.

74

A Thanks
Special thanks for providing input as well as mathematical support goes to:

• DJ Johnston

• Yi Mao

• Sandy Harris

• Dr. Matthias Peter

• Quentin Gouchet

B Source Code Availability
The source code, this document as well as the test code for all aforementioned
tests is available at http://www.chronox.de/esdm.

C SP800-90B Entropy Measurements
The following table presents the SP800-90B entropy measurements indicating
whether the found entropy is sufficiently high to support the entropy analysis
given in section 3.3.5. Entropy values are given in bits and apply to the entropy
found in one time stamp generated when receiving an interrupt event. The
testing shown in this section provides the quantiative foundation of the entropy
analysis compliant to sections 3.3.6 as well as all other assessments required for
SP800-90B.

The testing collected raw unconditioned time stamps as delivered by the
file /sys/kernel/debug/esdm_testing/esdm_raw_hires. The entropy calcu-
lation is based on 1,000,000 raw time stamps collected by the ESDM. To speed
up the raw time stamp collection as well as to obtain a worst-case assessment,
all test systems were either ping-flooded or within an SSH-session a find / was
executed to generate a large number of interrupts in a short amount of time.
The ping-flood generator was in close network proximity (e.g. KVM host, or a
system at most one switch away from the test system).

The entropy result listing in the table below is generated as follows. The
time stamps generated by the ESDM for each interrupt event is extracted and
concatenated to form a bit-stream. This bit stream is processed by the NIST
SP800-90B entropy analysis tool to obtain an entropy rate. This entropy rate
is listed below. As the 8 least significant bits (LSB) of the time stamp are used
and the other bits are ignored by the ESDM, the entropy rate applies to those
8 data bits. As discussed in sections 3.3.6, the ESDM assumes that each time
stamp provides at least slightly more than one bit of entropy. As all values
in the table below show significantly more entropy even with the worst-case
measurement of 8 LSB, the ESDM underestimates the entropy existing in the
respective system. Thus, the ESDM is considered to operate securely on these
systems. The test complies with SP800-90B outlined in section 3.3.3.

75

http://www.chronox.de/esdm
https://github.com/usnistgov/SP800-90B_EntropyAssessment/
https://github.com/usnistgov/SP800-90B_EntropyAssessment/

Test System Entropy of
1,000,000 Traces

Sufficient
Entropy

AMD Ryzen 5950X - 64-bit KVM
environment

4.531023 Y

AMD EPYC Milan 7713 2 sockets 128
cores 8-way NUMA

7.007947 Y

ARMv7 rev 5 1.9344 Y
ARMv7 rev 5

(Freescale i.MX53)14
7.07088 Y

ARMv7 rev 5
(Freescale i.MX6 Ultralite)15

6.638399 Y

ARM 64 bit AppliedMicro X-Gene
Mustang Board

5.599128 Y

Intel Atom Z530 – using GUI 3.38584 Y
Intel i7 7500U Skylake - 64-bit KVM

environment
3.452064 Y

Intel i7 8565U Whiskey Lake – 64-bit
KVM environment

7.400136 Y

Intel i7 8565U Whiskey Lake – 32-bit
KVM environment

7.405704 Y

Intel i7 8565U Whiskey Lake 6.871 Y
Intel Xeon E7 4870 8 sockets 160

CPUs 8-way NUMA
7.287790 Y

Intel Xeon Gold 6234 4.434168 Y
IBM POWER 8 LE 8286-42A 6.830712 Y
IBM POWER 7 BE 8202-E4C 4.233912 Y

IBM System Z z13 (machine 2964) 4.366368 Y
IBM System Z z15 (machine 8561) 5.691832 Y

MIPS Atheros AR7241 rev 116 7.157064 Y
MIPS Lantiq 34Kc V5.617 7.032740 Y

Qualcomm IPQ4019 ARMv718 6.638405 Y
SiFive HiFive Unmatched RISC-V U74 2.387470 Y

Table 3: ESDM Entropy Testing Results on Different Hardware

Some of the tested systems are quite old or are small embedded devices
demonstrating that even on older and smaller systems the ESDM does not
overestimate the available entropy when applying worst case conditions.

I am looking for test data from all kinds of systems. The less common a
system is the more I am interested in the data to verify that the basic entropy
estimate underlying the ESDM is correct. If you want to provide support, please
generate data using the ESDM test tool set specifically the test as documented
in addon/.

14USBArmory MK I
15USBArmory MK II
16Ubiquiti Nanostation M5 (xm)
17AVM Fritz Box 7490
18AVM Fritz Box 7520

76

https://www.chronox.de/esdm

The effect of the application of the GCD can be clearly demonstrated with
the Intel Atom Z530 listed in the above table. The table shows the measurement
of without dividing the time stamp by the GCD. The GCD measurement during
boot detects that all time stamps have a GCD of 4 which means that the low
2 bits are always unset. Re-running the entropy measurements again on the
time stamp that is already divided by 4, the resulting entropy rate is 7.299
bits of entropy per the 8 LSB of the time stamp. This clearly shows that the
now considered 2 additional bits of the 8 LSB time stamp after the division
with the GCD provides additional entropy which again demonstrates that the
ESDM heuristic entropy estimation is safe. It may be noted that by considering
2 additional bits that are now considered for the entropy rate seemingly provide
more than 2 bits of entropy (before the GCD, the entropy rate was measured
at 3.38 which would imply that by adding 2 bits that may provide full entropy,
the rate cannot be higher than 5.38). This seeming inconsistency is due to the
fact that a new test run was conducted to get new entropy data. The ping flood
used to trigger the IRQ events may have been affected by network congestion
adding some delays to the interrupts caused by the ping flood.

D Auxiliary Testing
In addition to the entropy testing additional functional tests are applied using
the meson test infrastructure. For details, see the ‘tests‘ directory.

E Bibliographic Reference

References
[1] Y. Nir and A. Langley. ChaCha20 and Poly1305 for IETF Protocols.

RFC 7539 (Informational), May 2015. URL http://www.ietf.org/rfc/
rfc7539.txt.

[2] Meltem Sönmez Turan, Elaine Barker, John Kelsey, Kerry A. McKay,
Mary L. Baish, and Mike Boyle. NIST Special Publication 800-90B Rec-
ommendation for the Entropy Sources Uses for Random Bit Generation.
2018.

F License
The implementation of the Entropy Source and DRNG Manager, all support
mechanisms, the test cases and the documentation are subject to the following
license.

Copyright Stephan Müller <smueller@chronox.de>, 2022.
Redistribution and use in source and binary forms, with or without modifi-

cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
and the entire permission notice in its entirety, including the disclaimer of
warranties.

77

http://www.ietf.org/rfc/rfc7539.txt
http://www.ietf.org/rfc/rfc7539.txt

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.

ALTERNATIVELY, this product may be distributed under the terms of the
GNU General Public License, in which case the provisions of the GPL are re-
quired INSTEAD OF the above restrictions. (This clause is necessary due to a
potential bad interaction between the GPL and the restrictions contained in a
BSD-style copyright.)

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IM-
PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ALL OF WHICH ARE HEREBY DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF NOT
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

G Change Log

Date ESDM
Ver-
sion

Change

2022-05.10 v0.2.0 Initial public release
2022-07-02 v.0.4.0 Addition of new /proc interfaces

Initial seeding is limited to availability of 256 bits
Addition of interupt ES - addition of chapter 3 and

appendix C
NTG.1 compliance using /dev/random with

O_SYNC
per-CPU scheduler entropy pool

Correct various left-over statements from LRNG
2022-08-02 v0.5.0 Addition of HWRAND entropy source

Addition of GRND_RANDOM to getrandom(2)
Addition of GRND_SEED to getrandom(2)

2023-06-26 v0.6.0 Addition of AIS 20/31 (2022) support
Add forced seeding operation discussion

2023-10-07 v1.0.0 Rename oversample_es
Document FIPS 140 mode

2024-02-07 v1.0.2 Update URLs due to revamp of https://chronox.de

78

	1 Introduction
	1.1 Properties Offered by the ESDM
	1.2 Document Structure

	2 ESDM Design
	2.1 ESDM Components
	2.2 ESDM Data Processing
	2.2.1 Scheduler and Interrupt Entropy Sources
	2.2.2 Interrupt Entropy Source
	2.2.3 Scheduler Entropy Source
	2.2.4 Auxiliary Entropy Pool
	2.2.5 CPU Entropy Source
	2.2.6 Temporary Seed Buffer Construction

	2.3 ESDM Architecture
	2.3.1 Minimally Versus Fully Seeded Level
	2.3.2 NUMA Systems
	2.3.3 Flexible Design

	2.4 ESDM Data Structures
	2.5 Interrupt Processing - ESDM-internal Entropy Source
	2.5.1 Entropy Amount of Scheduling Events
	2.5.2 Health Tests

	2.6 Scheduler Events - ESDM-internal Entropy Source
	2.6.1 Entropy Amount of Interrupts
	2.6.2 Health Tests

	2.7 Auxiliary Entropy Pool - ESDM-external Entropy Sources
	2.7.1 Injecting Data From User Space
	2.7.2 Auxiliary Pool

	2.8 Jitter RNG - ESDM-external Entropy Source
	2.8.1 Entropy of CPU Jitter RNG Entropy Source

	2.9 CPU-base Entropy Source - ESDM-external Entropy Source
	2.9.1 Entropy of CPU Entropy Source

	2.10 Kernel RNG Entropy Source - ESDM-external Entropy Source
	2.10.1 Entropy of Kernel RNG Entropy Source

	2.11 DRNG Seeding Operation
	2.11.1 DRNG May Become Not Fully Seeded

	2.12 Cryptographic Primitives Used By ESDM
	2.12.1 DRBG
	2.12.2 ChaCha20 DRNG

	2.13 ESDM External Interfaces
	2.14 ESDM Self-Tests
	2.15 ESDM Test Interfaces

	3 Interrupt Entropy Source Assessment
	3.1 Noise Source Behavior
	3.1.1 Distribution of Raw Data
	3.1.2 Greatest Common Divisor Assessment
	3.1.3 Worst and Regular Case Distribution

	3.2 FIPS 140-2 Compliance
	3.2.1 FIPS 140-2 IG 7.18 Requirement For Statistical Testing
	3.2.2 FIPS 140-2 IG 7.18 Heuristic Analysis
	3.2.3 FIPS 140-2 IG 7.18 Additional Comment 1
	3.2.4 FIPS 140-2 IG 7.18 Additional Comment 2
	3.2.5 FIPS 140-2 IG 7.18 Additional Comment 3
	3.2.6 FIPS 140-2 IG 7.18 Additional Comment 4
	3.2.7 FIPS 140-2 IG 7.18 Additional Comment 6
	3.2.8 FIPS 140-2 IG 7.18 Additional Comment 9

	3.3 SP800-90B Compliance
	3.3.1 SP800-90B Section 3.1.1
	3.3.2 SP800-90B Section 3.1.2
	3.3.3 SP800-90B Section 3.1.3
	3.3.4 SP800-90B Section 3.1.4
	3.3.5 SP800-90B Section 3.1.5
	3.3.6 SP800-90B Section 3.1.5.1
	3.3.7 SP800-90B Section 3.1.6
	3.3.8 SP800-90B Section 3.2.1 Requirement 1
	3.3.9 SP800-90B Section 3.2.1 Requirement 2
	3.3.10 SP800-90B Section 3.2.1 Requirement 3
	3.3.11 SP800-90B Section 3.2.1 Requirement 4
	3.3.12 SP800-90B Section 3.2.1 Requirement 5
	3.3.13 SP800-90B Section 3.2.1 Requirement 6
	3.3.14 SP800-90B Section 3.2.1 Requirement 7
	3.3.15 SP800-90B Section 3.2.2 Requirement 1
	3.3.16 SP800-90B Section 3.2.2 Requirement 2
	3.3.17 SP800-90B Section 3.2.2 Requirement 3
	3.3.18 SP800-90B Section 3.2.2 Requirement 4
	3.3.19 SP800-90B Section 3.2.2 Requirement 5
	3.3.20 SP800-90B Section 3.2.2 Requirement 6
	3.3.21 SP800-90B Section 3.2.2 Requirement 7
	3.3.22 SP800-90B Section 3.2.3 Requirement 1
	3.3.23 SP800-90B Section 3.2.3 Requirement 2
	3.3.24 SP800-90B Section 3.2.3 Requirement 3
	3.3.25 SP800-90B Section 3.2.3 Requirement 4
	3.3.26 SP800-90B Section 3.2.3 Requirement 5
	3.3.27 SP800-90B Section 3.2.4 Requirement 1
	3.3.28 SP800-90B Section 3.2.4 Requirement 2
	3.3.29 SP800-90B Section 3.2.4 Requirement 3
	3.3.30 SP800-90B Section 3.2.4 Requirement 4
	3.3.31 SP800-90B Section 3.2.4 Requirement 5
	3.3.32 SP800-90B Section 3.2.4 Requirement 6
	3.3.33 SP800-90B Section 3.2.4 Requirement 7
	3.3.34 SP800-90B Section 4.3 Requirement 1
	3.3.35 SP800-90B Section 4.3 Requirement 2
	3.3.36 SP800-90B Section 4.3 Requirement 3
	3.3.37 SP800-90B Section 4.3 Requirement 4
	3.3.38 SP800-90B Section 4.3 Requirement 5
	3.3.39 SP800-90B Section 4.3 Requirement 6
	3.3.40 SP800-90B Section 4.3 Requirement 7
	3.3.41 SP800-90B Section 4.3 Requirement 8
	3.3.42 SP800-90B Section 4.3 Requirement 9
	3.3.43 SP800-90B Section 4.4

	3.4 NIST Clarification Requests
	3.4.1 Sensitivity of Interrupt Timing Measurements
	3.4.2 Dependency Between Interrupt Timing Measurements

	3.5 SP800-90B Compliant Configuration
	3.6 Reuse of SP800-90B Analysis

	4 Scheduler Entropy Source Assessment
	5 ESDM Specific Configurations
	5.1 SP800-90C Compliance
	5.1.1 RBG2(P) Construction Method
	5.1.2 SP800-90C Compliant Configuration
	5.1.3 FIPS 140 Compliant Configuration

	5.2 AIS 20 / 31
	5.2.1 NTG.1 (AIS 20/31 2011) Compliant Configuration
	5.2.2 NTG.1 (AIS 20/31 2022) Compliant Configuration
	5.2.3 DRG.4 / PTG.3 Compliant Configuration

	A Thanks
	B Source Code Availability
	C SP800-90B Entropy Measurements
	D Auxiliary Testing
	E Bibliographic Reference
	F License
	G Change Log

