
CPU Time Jitter Based Non-Physical True
Random Number Generator

Stephan Müller <smueller@chronox.de>

October 24, 2022

Abstract
Today’s operating systems provide non-physical true random number

generators which are based on hardware events. With the advent of virtu-
alization and the ever growing need of more high-quality random numbers,
these random number generators reach their limits. Additional sources of
entropy must be opened up. This document introduces an entropy source
based on CPU execution time jitter. The design and implementation of
a non-physical true random number generator, the CPU Jitter random
number generator, its statistical properties and the maintenance and be-
havior of entropy is discussed in this document.

Contents
1 Introduction 5

1.1 Related Work . 7
1.2 Applicable Code Version . 8

2 CPU Execution Time Jitter 8
2.1 Assumptions . 9
2.2 Jitter Depicted . 9

3 Random Number Generator Design 13
3.1 Maintenance of Entropy . 14

3.1.1 Noise Source: Memory Access 15
3.1.2 Obtaining Time Delta . 16
3.1.3 Noise Source: Inject Time Delta Into Entropy Pool Using

An LFSR . 16
3.2 Generation of Random Number Bit Stream 17
3.3 Runtime Health Tests . 17

3.3.1 Stuck Test . 18
3.3.2 Repetition Count Test . 18
3.3.3 Adaptive Proportion Test 18

3.4 Initialization . 18
3.5 Memory Protection . 19
3.6 Locking . 19
3.7 Intended Method of Use . 20
3.8 Programming Dependencies on Operating System 20

1

4 Random Generator Statistical Assessment 21
4.1 Statistical Properties of Entropy Pool 21
4.2 Statistical Properties of Random Number Bit Stream 26
4.3 Anti-Tests . 29

4.3.1 Static Increment of Time Stamp 29
4.3.2 Pattern-based Increment of Time Stamp 29
4.3.3 Disabling of System Features 29

5 Entropy Behavior 29
5.1 Base Entropy Source . 30

5.1.1 Noise Sources Depicted 30

6 Assessment of Noise Sources 41
6.1 CPU Execution Timing Jitter . 41

6.1.1 Serialization Instruction 42
6.1.2 Prevention of System Call And Branch Prediction Inter-

ference . 44
6.1.3 Flush of CPU Instruction Pipeline 44
6.1.4 Flush of CPU Caches . 45
6.1.5 Disabling of Preemption 45
6.1.6 TLB Flush . 45
6.1.7 Pinning of Entropy Collection to one CPU 45
6.1.8 Disabling of Frequency Scaling and Power Management . 46
6.1.9 Disabling of L1 and L2 Caches 46
6.1.10 Disabling of L1 and L2 Caches And Interrupts 47
6.1.11 Disabling of All CPU Mechanisms 47

6.2 Memory Access Testing . 50
6.2.1 Noise Source Discussion 50
6.2.2 Noise Source Measurements 51
6.2.3 Memory Accesses and LFSR Loop 60

6.3 Noise Source Testing Without Operating System 62

7 Standards Compliance 67
7.1 FIPS 140-2 Compliance . 67

7.1.1 FIPS 140-2 IG 7.18 Requirement For Statistical Testing . 67
7.1.2 FIPS 140-2 IG 7.18 Heuristic Analysis 67
7.1.3 FIPS 140-2 IG 7.18 Additional Comment 1 67
7.1.4 FIPS 140-2 IG 7.18 Additional Comment 2 68
7.1.5 FIPS 140-2 IG 7.18 Additional Comment 3 68
7.1.6 FIPS 140-2 IG 7.18 Additional Comment 4 68
7.1.7 FIPS 140-2 IG 7.18 Additional Comment 6 68
7.1.8 FIPS 140-2 IG 7.18 Additional Comment 9 69

7.2 SP800-90B Compliance . 69
7.2.1 SP800-90B Section 3.1.1 69
7.2.2 SP800-90B Section 3.1.2 69
7.2.3 SP800-90B Section 3.1.3 69
7.2.4 SP800-90B Section 3.1.4 70
7.2.5 SP800-90B Section 3.1.5 71
7.2.6 SP800-90B Section 3.1.5.2 71
7.2.7 SP800-90B Section 3.1.6 72

2

7.2.8 SP800-90B Section 3.2.1 Requirement 1 72
7.2.9 SP800-90B Section 3.2.1 Requirement 2 73
7.2.10 SP800-90B Section 3.2.1 Requirement 3 73
7.2.11 SP800-90B Section 3.2.1 Requirement 4 73
7.2.12 SP800-90B Section 3.2.1 Requirement 5 73
7.2.13 SP800-90B Section 3.2.1 Requirement 6 73
7.2.14 SP800-90B Section 3.2.1 Requirement 7 74
7.2.15 SP800-90B Section 3.2.2 Requirement 1 74
7.2.16 SP800-90B Section 3.2.2 Requirement 2 74
7.2.17 SP800-90B Section 3.2.2 Requirement 3 74
7.2.18 SP800-90B Section 3.2.2 Requirement 4 74
7.2.19 SP800-90B Section 3.2.2 Requirement 5 74
7.2.20 SP800-90B Section 3.2.2 Requirement 6 74
7.2.21 SP800-90B Section 3.2.2 Requirement 7 74
7.2.22 SP800-90B Section 3.2.3 Requirement 1 74
7.2.23 SP800-90B Section 3.2.3 Requirement 2 75
7.2.24 SP800-90B Section 3.2.3 Requirement 3 75
7.2.25 SP800-90B Section 3.2.3 Requirement 4 75
7.2.26 SP800-90B Section 3.2.3 Requirement 5 75
7.2.27 SP800-90B Section 3.2.4 Requirement 1 75
7.2.28 SP800-90B Section 3.2.4 Requirement 2 75
7.2.29 SP800-90B Section 3.2.4 Requirement 3 75
7.2.30 SP800-90B Section 3.2.4 Requirement 4 75
7.2.31 SP800-90B Section 3.2.4 Requirement 5 75
7.2.32 SP800-90B Section 3.2.4 Requirement 6 76
7.2.33 SP800-90B Section 3.2.4 Requirement 7 76
7.2.34 SP800-90B Section 4.3 Requirement 1 76
7.2.35 SP800-90B Section 4.3 Requirement 2 76
7.2.36 SP800-90B Section 4.3 Requirement 3 76
7.2.37 SP800-90B Section 4.3 Requirement 4 76
7.2.38 SP800-90B Section 4.3 Requirement 5 76
7.2.39 SP800-90B Section 4.3 Requirement 6 77
7.2.40 SP800-90B Section 4.3 Requirement 7 77
7.2.41 SP800-90B Section 4.3 Requirement 8 77
7.2.42 SP800-90B Section 4.3 Requirement 9 77
7.2.43 SP800-90B Section 4.4 . 77

7.3 NIST Clarification Requests . 78
7.3.1 Sensitivity of Jitter Measurements 78
7.3.2 Dependency Between Jitter Measurements 79

7.4 Reuse of SP800-90B Analysis . 79

8 Conclusion 80
8.1 Threat Scenario . 82

8.1.1 Interleaving of Time Stamp Collection 82

A Availability of Source Code 83

3

B Linux Kernel Implementation 83
B.1 Kernel Crypto API Interface . 84
B.2 Kernel DebugFS Interface . 85
B.3 Integration with random.c . 86
B.4 Test Cases . 86

C Libgcrypt Implementation 86

D OpenSSL Implementation 88

E Shared Library And Stand-Alone Daemon 89

F LFSR Loop Entropy Measurements 89
F.1 Intel Core i5 4200U . 102
F.2 Intel Core i7 3537U . 103
F.3 Intel Core i7 2620M compiled with Clang 104
F.4 Intel Core i5 2430M . 107
F.5 Intel Core i5 2410M . 108
F.6 Intel Core i7 Q720 . 109
F.7 Intel Xeon E5504 . 110
F.8 Intel Core 2 Quad Q6600 . 113
F.9 Intel Core 2 Duo T5870 . 115
F.10 Intel Core 2 Duo With Windows 7 116
F.11 Intel Core Duo L2400 . 117
F.12 Intel Core Duo Solo T1300 With NOVA Microkernel 118
F.13 Intel Core Duo Solo T1300 With Fiasco.OC Microkernel 119
F.14 Intel Core Duo Solo T1300 With Pistachio Microkernel 120
F.15 Intel Atom Z530 . 121
F.16 Intel Core 2 Duo on Apple MacBook Pro 122
F.17 Intel Celeron . 123
F.18 Intel Mobile Celeron 733 MHz . 124
F.19 Intel Pentium P4 3GHz . 126
F.20 Intel Pentium P4 Mobile . 127
F.21 AMD Opteron 6128 . 128
F.22 AMD Phenom II X6 1035T . 129
F.23 AMD Athlon 7550 . 130
F.24 AMD Athlon 4850e . 132
F.25 AMD E350 . 134
F.26 AMD Semperon 3GHz . 136
F.27 VIA Nano L2200 . 139
F.28 MIPS 24KC v7.4 . 140
F.29 MIPS 24KC v4.12 Ikanos Fusiv Core 141
F.30 MIPS 4KEc V6.8 . 142
F.31 MIPS 4KEc V4.8 . 144
F.32 ARM Exynos 5250 with Fiasco.OC Microkernel 146
F.33 ARMv7 rev 1 – Samsung Galaxy S2 147
F.34 ARMv7 rev 2 – LG Nexus 4.2 . 150
F.35 ARMv7 rev 0 – Samsung Galaxy S4 150
F.36 ARMv7 rev 1 – HTC Desire Z 150
F.37 ARMv6 rev 7 . 150

4

F.38 IBM POWER7 with AIX 6.1 . 153
F.39 IBM POWER7 with Linux . 155
F.40 IBM POWER5 with Linux . 156
F.41 Apple G5 QuadCore PPC 970MP 157
F.42 SUN UltraSparc IIIi . 159
F.43 SUN UltraSparc II . 162
F.44 SUN UltraSparc IIi (Sabre) . 163
F.45 IBM System Z z10 . 165
F.46 IBM System Z z10 . 166

F.46.1 64 bit Word Size . 166
F.46.2 31 bit Word Size . 169

F.47 Intel Core i7 2620M With RDTSC Instruction 171
F.47.1 Ubuntu Linux 13.04 with KDE 172
F.47.2 Ubuntu Linux 13.04 without X11 173
F.47.3 OpenIndiana 151a7 . 174
F.47.4 NetBSD 6.0 . 176
F.47.5 FreeBSD 9.1 . 177

G BSI AIS 20 / 31 NTG.1 Properties 178

H Bibliographic Reference 179

I Thanks 179

J License 180

1 Introduction
Each modern general purpose operating system offers a non-physical true ran-
dom number generator. In Unix derivatives, the device file /dev/random allows
user space applications to access such a random number generator. Most of
these random number generators obtain their entropy from time variances of
hardware events, such as block device accesses, interrupts triggered by devices,
operations on human interface devices (HID) like keyboards and mice, and other
devices.

Limitations of these entropy sources are visible. These include:

• Hardware events do not occur fast enough to satisfy the ever grown needs
of high-quality random numbers. Today’s implementation of such hard-
ware event based random number generators provide a hybrid formed by
the joining of the hardware event collection which is post-processed by
a deterministic whitening function. In case of insufficient entropy, the
whitening function ensures that the continuously generated output still
behaves random even when new entropy is lacking.

• Virtualized environments remove an operating system from direct hard-
ware access. The properties of the observed hardware events in a vir-
tualized environment do not match with the properties required by the
non-physical true random number generators. The implication on the en-
tropy collected by these random number generators is not well researched,

5

but it is safe to assume that the entropy is overestimated by the standard
operating system’s random number generators.

• Depending on the usage environment of the operating system, entire classes
of hardware devices may be missing and can therefore not be used as en-
tropy source. For example, a server system located in a server lab typically
does not have any human interface devices attached.

• A number of the operating system’s non-physical true random number
generators use block devices, such as hard disks as entropy source. The
heart of the entropy lies in the timing variances when accessing such disks
which depend on the spin angle of the disk or the location of the read heads
at the time of the access request. The more and more often used Solid
State Disks (SSDs) advertise themselves as block devices to the operating
system but yet lack the physical phenomenon that is expected to deliver
entropy. The implication is that the SSD block devices cannot be used as
entropy source either, although they are partially still treated as entropy
source by the standard operating system’s random number generators.

• On Linux, the majority of the entropy for the input_pool behind /dev/random
is gathered from the random_get_entropy time stamp. However, that
time stamp function returns 0 hard coded on several architectures, such
as MIPS. Thus, there is not much entropy that is present in the entropy
pool behind /dev/random or /dev/urandom.

• Current cache-based attacks allow unprivileged applications to observe the
operation of other processes, privileged code as well as the kernel. Thus,
it is desirable to have fast moving keys. This applies also to the seed keys
used for deterministic random number generators.

How can these challenges be met? A new source of entropy must be developed
that is not affected by the mentioned problems.

This document introduces a non-physical true random number generator,
called CPU Jitter random number generator, which is developed to meet the
following goals:

1. The random number generator shall only operate on demand. Other
random number generators constantly operate in its lifetime, regardless
whether the operation is needed or not, binding computing resources.

2. The random number generator shall always return random numbers with
a speed that satisfies today’s requirement for random numbers. The ran-
dom number generator shall be able to be used synchronously with the
random number consuming application, such as the seeding of a determin-
istic random number generator.

3. The random number generator shall not block the request for user notice-
able time spans.

4. The random number generator shall deliver high-quality random numbers
when used in virtualized environments.

5. The random number generator shall not require a seeding with data from
previous instances of the random number generator.

6

6. The random number generator shall work equally well in kernel space and
user space.

7. The random number generator implementation shall be small, and easily
understood.

8. The random number generator shall provide a decentralized source of en-
tropy. Every user that needs random numbers executes its own instance
of the CPU Jitter random number generator. Any denial of service at-
tacks or other attacks against a central entropy source with the goal to
decrease the level of entropy maintained by the central entropy source is
eliminated. The goal is that there is no need of a central /dev/random or
/dev/urandom device.

9. The random number generator shall provide perfect forward and backward
secrecy, even when the internal state becomes known.

Apart from these implementation goals, the random number generator must
comply with the general quality requirements placed on any (non-)physical true
random number generator:

Entropy The random numbers delivered by the generator must contain true
information theoretical entropy. The information theoretical entropy is
based on the definition given by Shannon.

Statistical Properties The random number bit stream generated by the gen-
erator must not follow any statistical significant patterns. The output of
the proposed random number generator must pass all standard statistical
tools analyzing the quality of a random data stream.

These two basic principles will be the guiding central theme in assessing the
quality of the presented CPU Jitter random number generator.

The document contains the following parts:

• Discussion of the noise source in chapter 2

• Presentation of CPU Jitter random number generator design in chapter 3

• Discussion of the statistical properties of the random number generator
output in chapter 4

• Assessment of the entropy behavior in the random number generator in
chapter 5

But now away with the theoretical blabber: show me the facts! What is the
central source of entropy that is the basis for the presented random number
generator?

1.1 Related Work
Another implementation of random number generators based on CPU jitter is
provided with HAVEGEd. A similar work is proposed in The maxwell random
number generator by Sandy Harris.

An analysis of the system-inherent entropy in the Linux kernel is given with
the Analysis of inherent randomness of the Linux kernel by N. Mc Guire, P.
Okech, G. Schiesser.

7

http://www.issihosts.com/haveged/
ftp://ftp.cs.sjtu.edu.cn:990/sandy/maxwell/
ftp://ftp.cs.sjtu.edu.cn:990/sandy/maxwell/
http://lwn.net/images/conf/rtlws11/random-hardware.pdf
http://lwn.net/images/conf/rtlws11/random-hardware.pdf

1.2 Applicable Code Version
This document applies and describes the Jitter RNG code revision 2.2.0

2 CPU Execution Time Jitter
We do have deterministically operating CPUs, right? Our operating systems
behave fully deterministically, right? If that would not be the case, how could
we ever have operating systems using CPUs that deliver a deterministic func-
tionality.

Current hardware supports the efficient execution of the operating system
by providing hardware facilities, including:

• CPU instruction pipelines. Their fill level have an impact on the execu-
tion time of one instruction. These pipelines therefore add to the CPU
execution timing jitter.

• The CPU clock cycle is different than the memory bus clock speed. There-
fore, the CPU has to enter wait states for the synchronization of any mem-
ory access where the time delay added for the wait states adds to time
variances.

• The CPU frequency scaling which alters the processing speed of instruc-
tions.

• The CPU power management which may disable CPU features that have
an impact on the execution speed of sets of instructions.

• Instruction and data caches with their varying information – tests showed
that before the caches are filled with the test code and the CPU Jitter
random number generator code, the time deltas are bigger by a factor of
two to three;

• CPU topology and caches used jointly by multiple CPUs;

In addition to the hardware nondeterminism, the following operating system
caused system usage adds to the non-deterministic execution time of sets of
instructions:

• CPU frequency scaling depending on the work load;

• Branch prediction units;

• TLB caches;

• Moving of the execution of processes from one CPU to another by the
scheduler;

• Hardware interrupts that are required to be handled by the operating
system immediately after the delivery by the CPU regardless what the
operating system was doing in the mean time;

• Large memory segments whose access times may vary due to the physical
distance from the CPU.

8

2.1 Assumptions
The CPU Jitter random number generator is based on a number of assumptions.
Only when these assumptions are upheld, the data generated can be believed
to contain the requested random numbers. The following assumptions apply:

• Attacker having hardware level privileges or attacker controlling the execu-
tion environment1 of the operating system are assumed to be not present.
With hardware level privilege, on some CPU it may be possible to change
the state of the CPU such as that caches are disabled. In addition, mil-
licode may be changed such that operations of the CPU are altered such
that operations are not executed any more. The assumption is considered
to be unproblematic, because if an attacker has hardware level privilege,
the collection of entropy is the least of our worries as the attacker may sim-
ply bypass the entropy collection and furnish a preset key to the random
numbers-seeking application.

• Attacker with physical access to the CPU interior is assumed to be not
present. In some CPUs, physical access may allow enabling debug states or
the readout of the entire CPU state at one particular time. With the CPU
state, it may be possible to deduct upcoming variations when the CPU
Jitter random number generator is executed immediately after taking a
CPU state snapshot. An attacker with this capability, however, is also
able to read out the entire memory. Therefore, when launching the attack
shortly after the entropy is collected, the attacker could read out the key
or seed material, bypassing the entropy collection. Again, with such an
attacker, the entropy collection is the least of our worries in this case.

If attackers are absent, the assumptions are trivially met.

2.2 Jitter Depicted
With the high complexity of modern operating systems and their big monolithic
kernels, all the mentioned hardware components are extensively used. However,
due to the complexity, nobody is able to determine which is the fill level of the
caches or branch prediction units, or the precise location of data in memory at
one given time.

This implies that the execution of instruction may have minuscule variations
in execution time. In addition, modern CPUs have a high-resolution timer
or instruction counter that is so precise that they are impacted by these tiny
variations. For example, modern x86 CPUs have a TSC clock whose resolution
is in the nanosecond range.

These variations in the execution time of an identical set of CPU instructions
can be visualized. Figure 2.1 illustrates the variation of the following code
sequence:

Listing 1: Collection of Time Variances in Userspace
static inline void jent_get_nstime (uint64_t *out)
{
...

if (clock_gettime (CLOCK_REALTIME , &time) == 0)

1Virtual Machine Monitors, Simulators, Emulators, Hypervisors, etc.

9

...
}

void main(void)
{
...

for(i = 0; (SAMPLE_COUNT + CACHE_KILL) >i ; i++)
{

...
jent_get_nstime (& time);
jent_get_nstime (& time2);
delta = time2 - time;

...
}

The contents of the variable delta is not identical between the individual
loop iterations. When running the code with a loop count of 1,000,000 on an
otherwise quiet system to avoid additional time variance from the noise of other
processes, we get data as illustrated in figure 2.1.

Figure 2.1: Distribution of time variances in user space over 1.000.000 loops

Please note that the actual results of the aforementioned code contains a few
exceptionally large deltas as an operating system can never be fully quiet. Thus,
the test results were processed to cut off all time deltas above 64. The limitation
of the graph to all variations up to 64 can be considered as a “magnification”
of the data set to the interesting values.

Figure 2.1 contains the following information of interest to us:

• The bar diagram shows the relative frequency of the different delta values
measured by the code. For example, the delta value of 22 (nanoseconds –
note the used timer returns data with nanosecond precision) was measured
at 25% of all deltas. The value 23 (nanoseconds) was measured at about
25% of all time deltas.

10

• The red and blue vertical lines indicate the mean and median values. The
mean and median is printed in the legend below the diagram. Note, they
may overlap each other if they are too close. Use the legend beneath the
diagram as a guidance in this case.

• The two green vertical lines indicate the first and third quartile of the
distribution. Again, the values of the quartiles are listed in the legend.

• The red dotted line indicates a normal distribution defined by the mea-
sured mean and the measured standard derivation. The value of the stan-
dard derivation is given again in the legend.

• Finally, the legend contains the value for the Shannon Entropy that the
measured test sample contains. The Shannon Entropy is calculated with
the formula specified in section 5.1 using the observations after cutting off
the outliers above the threshold mentioned above.

The graph together with the code now illustrates the variation in execution
time of the very same set of operations – it illustrates the CPU execution time
jitter for a very tight loop. As these variations are based on the aforemen-
tioned complexity of the operating system and its use of hardware mechanisms,
no observer can deduce the next variation with full certainty even though the
observer is able to fully monitor the operation of the system. And these non-
deterministic variations are the foundation of the proposed CPU Jitter random
number generator.

As the CPU Jitter random number generator is intended to work in kernel
space as well, the same analysis is performed for the kernel. The following code
illustrates the heart of the data collection disregarding the details on copying
the data to user space2.

Listing 2: Collection of Time Variances in Kernel Space
static int jent_timer (char *data , size_t len)
{

__u64 time , time2 ;
time = time2 = 0;

...
time = random_get_entropy ();
time2 = random_get_entropy ();
snprintf (data , len , "% lld\n", (time2 - time));

...
}

Although the code sequence is slightly different to the user space code due to
the use of the architecture-dependent processor cycle function call random_get_entropy,
the approach is identical: obtaining two time stamps and returning the delta
between both. The time stamp variance collection is invoked 30.000.000 times
to obtain the graph presented in figure 2.23.

2For details on how to perform the test, see the tests_kernel/getstat.sh script and the
functionality discussed in appendix B.2.

3The generation of the given number of time deltas is very fast, typically less than 10
seconds. Thus, the shown graph is not fully representative. When re-performing the test, the
distribution varies greatly, including the Shannon Entropy. The lowest observed value was in
the 1.3 range and the highest was about 3. The reason for not obtaining a longer sample is
simply resources: calculating the graph would take more than 8 GB of RAM.

11

Figure 2.2: Distribution of time variances in kernel space over 10.000.000 loops

Striking differences between the timer variances in kernel and user space can
be detected:

• The timer delta value has obvious holes in its distribution. The reason
for that is the following observation: the processor cycle counter does not
increment in steps of one, but in steps of three4.

• However, the user space time stamp delta is much more narrowly dis-
tributed around the mean of the distribution. The kernel time stamp
deltas have a much wider range. Therefore, the Shannon Entropy value
of the kernel space distribution is larger than the one from the user space
distribution.

Even with the kernel time stamp incremented in steps of three, the user space
and the kernel space time stamps show a distribution and fluctuation. When
looking at the sequence of time deltas gathered during testing5, no pattern can
be detected. Therefore, the fluctuation and the resulting distribution are not
based on a repeating pattern and must be considered random.

The tests were executed on an Intel Core i7 with 2.7GHz. As the tests always
consume much CPU power, the frequency of the CPU was always at 2.7 GHz
during the tests. Surprisingly, when setting the maximum speed of the CPU
to 800MHz, which is the lowest setting on the test machine, the distribution of
the kernel timer variations hardly changes. For user space, the timer variations
are larger compared to a fast CPU on an otherwise quiet system as depicted

4It is important to note that this was observed on an Intel Core i7-2620 processor. Other
processors and especially other architectures may show a different pattern in the incrementa-
tion.

5The test result logs can be found in tests_kernel/timer-dist-kernel.data and
tests_userspace/timer-dist-userspace.data.

12

in figure 2.3. As the variations are even on a slower system, all subsequent
discussions will cover the worse case of the fast CPU speed illustrated above as
its variations inherently has less entropy.

Figure 2.3: Distribution of time variances in user space over 1.000.000 loops at
800 MHz

Now that we have established the basic source of entropy, the subsequent
design description of the random number generator must explain the following
two aspects which are the basic quality requirements discussed in chapter 1
applied to our entropy phenomenon:

1. The random number generator design must be capable of preserving and
collecting the entropy from the discussed phenomenon. Thus, the random
number generator must be able to “compress” the entropy phenomenon.

2. The random number generator must use the observed CPU execution time
jitter to generate an output bit string that delivers the random numbers
to a caller. That output string must not show any statistical anomalies
that allow an observer to deduce any random numbers or increase the
probability when guessing random numbers and thus reducing its entropy.

With the following chapter, the design of the random number generator is pre-
sented. Both requirements will be discussed.

3 Random Number Generator Design
The CPU Jitter random number generator uses the above illustrated operation
to read the high-resolution timer for obtaining time stamps. At the same time
it performs operations that are subject to the CPU execution time jitter which
also impact the time stamp readings.

13

3.1 Maintenance of Entropy
The heart of the random number generator is illustrated in figure 3.1.

Mem Access

Time Delta

LFSR into Pool

for (i <= 64*osr)

64 Bit
Random Number

Entropy
Collection Loop

INC 1

Update Loc
for(i <= cnt)

Memory Access

Time Stamp

MAX_ACC_LOOP_BIT
Low Bits

Add 2MIN_ACC_LOOP_BIT

Variation

Loop Counter Calc

cn
t =

 V
ar

ia
tio

n
+

64

Stuck Test

Figure 3.1: Entropy Collection Operation

The basic concept that is implemented with the CPU Jitter RNG can be
summarized as follows: The unpredictable phenomenon of variances in the ex-
ecution time of a given set of instructions is collected and accumulated. The
accumulation is implemented using an LFSR with an irreducible primitive poly-
nomial. The measurement of the execution time jitter is performed over the
post-processing logic of the LFSR and supportive functions. I.e. the CPU Jit-
ter RNG measures the execution time of the LFSR with its supporting functions
(and the additional noise source of the memory access) where the execution time
is then injected into the LFSR-maintained entropy pool.

The random number generator maintains a 64 bit unsigned integer variable,
the entropy pool, that is indicated with the dark gray shaded boxes in figure 3.1
which identify the entropy pool at two different times in the processing. The
light gray shaded boxes indicate the noise sources of the random number gen-
erator is based on.

In a big picture, the random number generator implements an entropy col-
lection loop that

1. invokes memory accesses to induce timing variations,

2. fetches a time stamp to calculate a delta to the time stamp of the previous
loop iteration,

3. inject the time delta value into the entropy pool using an LFSR that
operates bitwise on the time delta operation – i.e. each bit of the time
delta is processed independently by the LFSR,

4. verifies that basic properties of the time stamp are met,

5. rotates the pool to ensure that each bit location of the time stamp has an
even chance of being injected into each bit location of the entropy pool.

14

The loop is executed exactly 64 times as each loop iteration generates one bit
to fill all 64 bits of the entropy pool6.

The following subsection discuss every step in detail.
When considering that the time delta is always calculated by calculating

the delta to the previous loop iteration, and the fact that the majority of the
execution time is spend in the LFSR loop, the central idea of the CPU Jitter
Random Number Generator is to measure the execution time jitter over the
execution of the LFSR loop as well as the memory access.

3.1.1 Noise Source: Memory Access

For implementing memory access, memory is allocated during the allocation
time of the entropy collector. The memory access operation is defined by the
following values:

• Size of a memory block,

• Number of memory blocks forming the total memory that is accessed,

• Number of access operations to be performed.

The size of the memory can be obtained by multiplying the size of a memory
block with the number of block. Per default, one block is 64 bytes in size and
32 blocks are defined.

To perform a read and write access, one byte is simply incremented by one
and wrapped at 255. The code ensures that all bytes of the memory are accessed
evenly by maintaining an index pointing to the last byte in the memory that
was accessed.

This index is incremented by the size of one memory slot minus 1. In ad-
dition, the index is wrapped if it would point beyond the size of the memory
block. The following code snippet shows the handling of the index:

wrap = ec -> memblocksize * ec -> memblocks - 1;
...

ec -> memlocation = ec -> memlocation + ec -> memblocksize - 1;
if(ec -> memlocation > wrap)

ec -> memlocation -= wrap;

This code ensures that every byte in the memory is accessed once before one
byte is accessed a second time.

The memory is accessed in a loop whose length is defined by the number
of access operations. The number of access operations is defined by a time
stamp taken immediately before the memory access noise source is triggered.
The lowest 7 bits and discarding a zero value of the high-resolution time stamp
plus a static value of 128 are used to determine the number of memory access
operations. This implies that the number of memory accesses varies between
129 and 256. Measurements have shown that even with the smallest tested
CPUs an even distribution of the memory access operations is achieved.

6If the caller provides an oversampling rate of greater than 1 during the allocation of the
entropy collector, the loop iteration count of 64 is multiplied by this oversampling rate value.
For example, an oversampling rate of 3 implies that the 64 loop iterations are executed three
times – i.e. 192 times.

15

3.1.2 Obtaining Time Delta

The time delta is obtained by:

1. Reading a time stamp,

2. Subtracting that time stamp from the time stamp calculated in the pre-
vious loop iteration,

3. Storing the current time stamp for use in the next loop iteration to calcu-
late the next delta.

For every new request to generate a new random number, the first iteration of
the loop is used to “prime” the delta calculation. In essence, all steps of the
entropy collection loop are performed, except of mixing the delta into the pool
and rotating the pool. This first iteration of the entropy collection loop does not
impact the number of iterations used for entropy collection. This is implemented
by executing one more loop iteration than specified for the generation of the
current random number.

When a new random number is to be calculated, i.e. the entropy collection
loop is triggered anew, the previous contents of the entropy pool, which is used
as a random number in the previous round is reused. The reusing shall just mix
the data in the entropy pool even more. But the implementation does not rely
on any properties of that data. The mixing of new time stamps into the entropy
pool using an LFSR ensures that any entropy which may have been left over
from the previous entropy collection loop run is still preserved. If no entropy
is left, which is the base case in the entropy assessment, the already arbitrary
bit pattern in the entropy pool does not negatively affect the addition of new
entropy in the current round.

When the time delta is obtained, also the following properties of the time
are measured: the first, second and third derivation of the time. Only when
all three values are not 0, the resulting bit of the time delta after the LFSR
operation described in the following is considered valid – section 3.1.3 explains
how this validity is enforced.

3.1.3 Noise Source: Inject Time Delta Into Entropy Pool Using An
LFSR

The LFSR operation is depicted by the left side of figure 3.1. That LFSR
operation is implemented by a loop where the loop counter is not fixed.

The LFSR operation is considered as a noise source as the execution of
the LFSR operation contains variations that is measured with the time delta
measurement from the previous step.

To calculate the new LFSR loop counter a new time stamp is obtained. All
bits above the value MAX_FOLD_LOOP_BITS – which is set to 4 – are XORed into
the low 4 bits. The idea is that the fast moving bits of the time stamp value
determine the size of the collection loop counter. Why is it set to 4? The 4
low bits define a value between 0 and 24, i.e. a value between 0 and 16. This
uncertainty is used to spread the possible time deltas over a larger continuum
to have a larger entropy content in the time delta values. To ensure that the
collection loop counter has a minimum value, the value 20 is added – that value
is controlled with MIN_FOLD_LOOP_BIT. Thus, the range of the LFSR counter

16

value is from 20 to (24 + 20 - 1). Now, this newly determined collection loop
counter is used to perform a new fold loop as discussed in the following.

The used LFSR is a Fibonacci LSFR with polynomial of x64 + x61 + x56 +
x31 + x28 + x23 + 1 which is primitive according to A Table of Primitive Binary
Polynomials. To apply the LFSR, the time delta value of 64 bits is processed
bit-wise. I.e. each bit is injected into the entropy pool using the LFSR. After
one LFSR operation is completed, the entropy pool is rotated left by one bit.
The rotation operation ensures that one bit of the time delta value is mixed into
each bit of the entropy pool.

After the LFSR operation for all bits is completed, the result of the stuck
test is enforced: If the stuck test is negative, i.e. the time delta is considered to
be not stuck, the received entropy value is counted towards gathering 64 time
deltas. In addition, only when the time delta is not stuck, the LFSR result is
used to replace the current entropy pool. This implies that stuck values will
effectively not be mixed into the pool but the LFSR operation is performed
nonetheless.

If the stuck test, however, indicates that the time delta is stuck, the received
entropy value is not counted and not inserted into the entropy pool. This implies
that for generating one block of random numbers, the Jitter RNG gathers 64
non-stuck time delta values.

3.2 Generation of Random Number Bit Stream
We now know how one 64 bit random number value is generated. The interface
to the CPU Jitter random number generator allows the caller to provide a
pointer to memory and a size variable of arbitrary length. The random number
generator is herewith requested to generate a bit stream of random numbers of
the requested size that is to be stored in the memory pointed to by the caller.

The random number generator performs the following sequence of steps to
fulfill the request:

1. Check whether the requested size is smaller than 64 bits. If yes, generate
one 64 bit random number, copy the requested amount of bits to the
target memory and stop processing the request. The unused bits of the
random number are not used further. If a new request arrives, a fresh 64
bit random number is generated.

2. If the requested size is larger than 64 bits, generate one random number,
copy it to the target. Reduce the requested size by 64 bits and decide now
whether the remaining requested bits are larger or smaller than 64 bits
and based on the determination, follow either step 1 or step 2.

Mathematically step 2 implements a concatenation of multiple random numbers
generated by the random number generator.

3.3 Runtime Health Tests
The Jitter RNG implements the following health tests:

• Stuck Test

• Repetition Count Test

17

http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf
http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf

• Adaptive Proportion Test

Those tests are detailed in the following sections.

3.3.1 Stuck Test

The stuck test calculates the first, second and third discrete derivative of the
time to be processed by the LFSR. Only if all three values are non-zero, the
received time delta is considered to be non-stuck.

3.3.2 Repetition Count Test

The Jitter RNG uses an enhanced version of the Repetition Count Test (RCT)
specified in SP800-90B [Turan et al.(2018)Turan, Barker, Kelsey, McKay, Baish, and Boyle]
section 4.4.1. Instead of counting identical back-to-back values, the input to the
RCT is the counting of the stuck values during the generation of one Jitter RNG
output block. The data that is mixed into the entropy pool is the time delta, i.e.
the first discrete derivative of the time stamp. As the stuck result includes the
comparison of two back-to-back time deltas by computing the second discrete
derivative of the time stamp, the RCT simply checks that the second discrete
derivative of the time stamp is zero. If it is zero, the RCT counter is increased.
Otherwise, the RCT counter is reset to zero.

The RCT is applied with α = 2−30 compliant to the recommendation of
FIPS 140-2 IG 9.8.

During the counting operation, the Jitter RNG always calculates the RCT
cut-off value of C. If that value exceeds the allowed cut-off value, the Jitter
RNG output block will be calculated completely but discarded at the end. The
caller of the Jitter RNG is informed with an error code.

3.3.3 Adaptive Proportion Test

Compliant to SP800-90B [Turan et al.(2018)Turan, Barker, Kelsey, McKay, Baish, and Boyle]
section 4.4.2 the Jitter RNG implements the Adaptive Proportion Test (APT).
Considering that the entropy is present in the least significant bits of the time
delta, the APT is applied only to those least significant bits. The APT is applied
to the four least significant bits.

The APT is calculated over a window size of 512 time deltas that are to be
mixed into the entropy pool. By assuming that each time delta has (at least) one
bit of entropy and the APT-input data is non-binary, the cut-off value C = 325
as defined in SP800-90B section 4.4.2.

3.4 Initialization
The CPU Jitter random number generator is initialized in two main parts. At
first, a consuming application must call the jent_entropy_init(3) function
which validates some basic properties of the time stamp. Only if this validation
succeeds, the CPU Jitter random number generator can be used7.

7The importance of this call is illustrated in appendix F.31 as well as other sections in
appendix F where some CPUs are not usable as an entropy source.

18

The second part can be invoked multiple times. Each invocation results in
the instantiation of an independent copy of the CPU Jitter random number gen-
erator. This allows a consumer to maintain multiple instances for different pur-
poses. That second part is triggered with the invocation of jent_entropy_collector_alloc(3)
and implements the following steps:

1. Allocation and zeroization of memory used for the entropy pool and helper
variables – struct rand_data defines the entropy collector which holds
the entropy pool and its auxiliary values.

2. Invoking the entropy collection loop once – this fills the entropy pool
with the first random value which is not returned to any caller. The idea
is that the entropy pool is initialized with some values other than zero.
In addition, this invocation of the entropy collection loop implies that
the entropy collection loop counter value is set to a random value in the
allowed range.

3. If FIPS 140-2 is enabled by the calling application, the FIPS 140-2 con-
tinuous test is primed by copying the random number generated in step 3
into the comparing value and again triggering the entropy collection loop
again for a fresh random number.

3.5 Memory Protection
The CPU Jitter random number generator is intended for any consuming ap-
plication without placing any requirements. As a standard behavior, after com-
pleting the caller’s request for a random number, i.e. generating the bit stream
of arbitrary length, another round of the entropy collection loop is triggered.
That invocation shall ensure that the entropy pool is overwritten with a new
random value. This prevents a random value returned to the caller and poten-
tially used for sensitive purposes lingering in memory for long time. In case
paging starts, the consuming application crashes and dumps core or simply a
hacker cracks the application, no traces of even parts of a generated random
number will be found in the memory the CPU Jitter random number generator
is in charge of.

In case a consumer is deemed to implement a type of memory protection, the
flag CRYPTO_CPU_JITTERENTROPY_SECURE_MEMORY can be set at compile time.
This flag prevents the above mentioned functionality.

Example consumers with memory protection are the kernel, and libgcrypt
with its secure memory.

3.6 Locking
The core of the CPU Jitter random number generator implementation does not
use any locking. If a user intends to employ the random number generator in an
environment with potentially concurrent accesses to the same instance, locking
must be implemented. A lock should be taken before any request to the CPU
Jitter random number generator is made via its API functions.

Examples for the use of the CPU Jitter random number generator with locks
are given in the reference implementations outlined in the appendices.

19

3.7 Intended Method of Use
The CPU Jitter random number generator must be compiled without opti-
mizations. The discussion in section 5.1 supported by appendix F explains the
reason.

The interface discussed in section 3.2 is implemented such that a caller
requesting an arbitrary number of bytes is satisfied. The output can be fed
through a whitening function, such as a deterministic random number genera-
tor or a hash based cryptographically secure whitening function. The appendix
provides various implementations of linking the CPU Jitter random number
generator with deterministic random number generators.

However, the output can also be used directly, considering the statistical
properties and the entropy behavior assessed in the following chapters. The
question, however, is whether this is a wise course of action. Whitening shall
help to protect the entropy that is in the pool against observers. This especially
a concern if you have a central entropy source that is accessed by multiple
users – where a user does not necessarily mean human user or application, since
a user or an application may serve multiple purposes and each purpose is one
“user”. The CPU Jitter random number generator is designed to be instantiated
multiple times without degrading the different instances. If a user employs its
own private instance of the CPU Jitter random number generator, it may be
questionable whether a whitening function would be necessary.

But bottom line: it is a decision that the reader or developer employing the
random number generator finally has to make. The implementations offered in
the appendices offer the connections to whitening functions. Still, a direct use
of the CPU Jitter random number generator is offered as well.

3.8 Programming Dependencies on Operating System
The implementation of the CPU Jitter random number generator only uses the
following interfaces from the underlying operating systems. All of them are
implemented with wrappers in jitterentropy-base-*.h. When the used op-
erating system offers these interfaces or a developer replaces them with accord-
ingly, the CPU Jitter random number generator can be compiled on a different
operating system or for user and kernel space:

• Time stamp gathering: jent_get_nstime must deliver the high resolution
time stamp. This function is an architecture dependent function with the
following implementations:

– User space:
∗ OnMach systems like MacOS, the function mach_absolute_time
is used for a high-resolution timer.

∗ On AIX, the function read_real_time is used for a righ resolu-
tion timer.

∗ On POSIX systems, the clock_gettime function is available for
this operation.

– Linux kernel space: In the Linux kernel, the random_get_entropy
function obtains this information. The directory arch/ contains

20

various assembler implementations for different CPUs to avoid us-
ing an operating system service. If random_get_entropy returns
0, which is the case on a large number of architectures the kernel-
internal call __getnstimeofday is invoked which uses the best avail-
able clocksource implementation. The goal with the invocation of
__getnstimeofday is to have a fallback for random_get_entropy
returning zero. Note, if that clocksource clock also is a low resolu-
tion timer like the Jiffies timer, the initialization function of the CPU
Jitter Random Number Generator is expected to catch this issue.

• jent_zalloc is a wrapper for the malloc function call to obtain memory.

• jent_zfree is a wrapper for calling the free function to release the mem-
ory.

• __u64 must be a variable type of a 64 bit unsigned integer – either unsigned
long on a 64 bit system or unsigned long long on a 32 bit system.

The following additional functions provided by an operating system are used
without a wrapper as they are assumed to be present in every operating envi-
ronment:

• memcpy

• memset

4 Random Generator Statistical Assessment
After the discussion of the design of the entropy collection, we need to perform
assessments of the quality of the random number generator. As indicated in
chapter 1, the assessment is split into two parts.

This chapter contains the assessment of the statistical properties of the data
in the entropy pool and the output data stream.

When compiling the code of the CPU Jitter random number generator with
instrumentations added to the code, data can be obtained for the following
graphs and distributions. The tests can be automatically re-performed by invok-
ing the tests_[userspace|kernel]/getstat.sh shell script which also gener-
ates the graphs using the R-Project language toolkit.

4.1 Statistical Properties of Entropy Pool
During a testing phase that generated 1,000,000 random numbers, the entropy
pool is observed. The observation generated statistical analyses for different
aspects illustrated in table 1. Each line in the table is one observation of the
entropy pool value of one round of the entropy collection loop. To read the
table, assume that the entropy pool is only 10 bits in size. Further, assume that
our entropy collection loop count is 3 to generate a random number.

The left column contains the entropy collection loop count and the indication
for the result rows. The middle columns are the 10 bits of the entropy pool.
The Bit sum column sums the set bits in the respective row. The Figure column
references the figures that illustrate the obtained test data results.

21

Loop count 0 1 2 3 4 5 6 7 8 9 Bit sum Figure
1 0 1 1 0 0 0 1 0 1 1 N/A N/A
2 0 0 0 1 0 1 1 1 0 0 N/A N/A
3 1 1 0 0 1 0 1 0 0 0 4 4.1

Result 1 1 2 1 1 1 1 3 1 1 1 13 4.3
Result 2 1 2 1 2 1 2 0 2 1 1 13 4.5

Table 1: Example description of tests

The “Result 1” row holds the number of bits set for each loop count per bit
position. In the example above, bit 0 has a bit set only once in all three loops.
Bit 1 is set twice. And so on.

The “Result 2” row holds the number of changes of the bits for each loop
count compared to the previous loop count per bit position. For example, for
bit 0, there is only one change from 0 to 1 between loop count 2 and 3. For bit
7, we have two changes: from 0 to 1 and from 1 to 0.

The graphs contains the same information as explained for figure 2.1.
The bit sum of loop count 3 is simply the sum of the set bits holds the

number of set bits at the last iteration count to generate one random number.
It is expected that this distribution follows a normal distribution closely, because
only such a normal distribution is supports implies a rectangular distribution
of the probability that each bit is equally likely to be picked when generating a
random number output bit stream. Figure 4.1 contains the distribution of the
bit sum for the generated random numbers in user space.

Figure 4.1: Bit sum of last round of entropy collection loop user space

In addition, the kernel space distribution is given in figure 4.2 – they are
almost identical and thus show the same behavior of the CPU Jitter random
number generator

22

Figure 4.2: Bit sum of last round of entropy collection loop kernel space

Please note that the black line in the graphs above is an approximation of
the density of the measurements using the histogram. When more histogram
bars would be used, the approximation would better fit the theoretical normal
distribution curve given with the red dotted line. Thus, the difference between
both lines is due to the way the graph is drawn and not seen in the actual
numbers. This applies also to the bars of the histogram since they are left-
aligned which means that on the left side of the diagram they overstep the
black line and on the right side they are within the black line.

The distribution for “Result 1” of the sum of of these set bits is given in
figure 4.3.

23

Figure 4.3: Bit sum of set bits per bit position in user space

Again, for the kernel we have an almost identical distribution shown in
figure 4.4. And again, we conclude that the behavior of the CPU Jitter random
number generator in both worlds is identical.

Figure 4.4: Bit sum of set bits per bit position in kernel space

A question about the shape of the distribution should be raised. One can
have no clear expectations about the distribution other than it must show the

24

following properties:

• It is a smooth distribution showing no breaks.

• It is a symmetrical distribution whose symmetry point is the mean.

The distribution for “Result 2” of the sum of of these bit variations in user space
is given in figure 4.5.

Figure 4.5: Bit sum of bit variations per bit position in user space

Just like above, the plot for the kernel space is given in figure 4.6.

25

Figure 4.6: Bit sum of bit variations per bit position in kernel space

Just like for the preceding diagrams, no material difference is obvious be-
tween kernel and user space. The shape of the distributions is similar to the one
for the distribution of set bits. An expected distribution can also not be given
apart from the aforementioned properties.

4.2 Statistical Properties of Random Number Bit Stream
The discussion of the entropy in chapter 5 tries to show that one bit of random
number contains one bit of entropy. That is only possible if we have a rectangular
distribution of the bits per bit position, i.e. each bit in the output bit stream has
an equal probability to be set. The CPU Jitter random number block size is 64
bit. Thus when generating a random number, each of the 64 bits must have an
equal chance to be selected by the random number generator. Therefore, when
generating large amounts of random numbers and sum the bits per bit position,
the resulting distribution must be rectangular. Figure 4.7 shows the distribution
of the bit sums per bit position for a bit stream of 10,000,000 random numbers,
i.e 640,000,000 bits.

26

Figure 4.7: Distribution of bit count per bit position of RNG output

Figure 4.7 looks pretty rectangular. But can the picture be right with all its
64 vertical lines? We support the picture by printing the box plot in figure 4.8
that shows the variance when focusing on the upper end of the columns.

Figure 4.8: Box plot of variations in bit count per bit position of RNG output

The box plot shows the very narrow fluctuation around expected mean value
of half of the count of random numbers produced, i.e. 5,000,000 in our case.
Each bit of a random number has the 50% chance to be set in one random
number. When looking at multiple random numbers, a bit still has the chance
of being set in 50% of all random numbers. The fluctuation is very narrow
considering the sample size visible on the scale of the ordinate of figure 4.7.

Thus, we conclude that the bit distribution of the random number generator
allows the possibility to retain one bit of entropy per bit of random number.

This conclusion is supported by calculating more thorough statistical prop-

27

erties of the random number bit stream are assessed with the following tools:

• ent

• dieharder

• BSI Test Procedure A

The ent tool is given a bit stream consisting of 10,000,000 random numbers (i.e.
80,000,000 Bytes) with the following result where ent calculates the statistics
when treating the random data as bit stream as well as byte stream:

Listing 3: ent statistical test
$ dd if =/ sys/ kernel / debug / jitterentropy /seed of= random .out bs =8 count =10000000

Byte stream
$ ent random .out
Entropy = 7.999998 bits per byte.

Optimum compression would reduce the size
of this 80000000 byte file by 0 percent .

Chi square distribution for 80000000 samples is 272.04 , and randomly
would exceed this value 25.00 percent of the times .

Arithmetic mean value of data bytes is 127.4907 (127.5 = random).
Monte Carlo value for Pi is 3.141600679 (error 0.00 percent).
Serial correlation coefficient is 0.000174 (totally uncorrelated = 0.0).

Bit stream
$ ent -b random .out
Entropy = 1.000000 bits per bit.

Optimum compression would reduce the size
of this 640000000 bit file by 0 percent .

Chi square distribution for 640000000 samples is 1.48 , and randomly
would exceed this value 25.00 percent of the times .

Arithmetic mean value of data bits is 0.5000 (0.5 = random).
Monte Carlo value for Pi is 3.141600679 (error 0.00 percent).
Serial correlation coefficient is -0.000010 (totally uncorrelated = 0.0).

During many re-runs of the ent test, most of the time, the Chi-Squared test
showed the test result of 50%, i.e. a perfect result – but even the showed 25% is
absolutely in line with random bit pattern. Very similar results were obtained
when executing the same test on:

• an Intel Atom Z530 processor;

• a MIPS CPU for an embedded device;

• an Intel Pentium 4 Mobile CPU;

• an AMD Semperon processor;

• KVM guest where the host was based on an Linux 3.8 kernel and with
QEMU version 1.4 without any special configuration of hardware access;

• OpenVZ guest on an AMD Opteron processor.

In addition, an unlimited bit stream is generated and fed into dieharder. The
test results are given with the files tests_userspace/dieharder-res.*. The

28

result files demonstrate that all statistical properties tested by dieharder are
covered appropriately.

The BSI Test Suite A shows no statistical weaknesses.
The test tools indicate that the bit stream complies with the properties of

random numbers.

4.3 Anti-Tests
The statistical analysis given above indicates a good quality of the random
number generator. To support that argument, an “anti” test is pursued to show
that the quality is not provided by the post-processing of the time stamp data,
but solely by the randomness of the time deltas. The post-processing therefore
is only intended to transform the time deltas into a bit string with a random
pattern and magnifying the timer entropy.

The following subsections outline different “anti” tests.

4.3.1 Static Increment of Time Stamp

The test is implemented by changing the function jent_get_nstime to maintain
a simple value that is incremented by 23 every time a time stamp is requested.
The value 23 is chosen as it is a prime. Yet, the increment is fully predictable
and does not add any entropy.

The stuck test ensures that the time stamp is rejected.

4.3.2 Pattern-based Increment of Time Stamp

Contrary to the static increment of the time stamp, this “anti” test describes
a pattern-based increment of the time stamp. The time stamp is created by
adding the sum of 23 and an additional increment using the following code:

Listing 4: Pattern-based Increment of Time Stamp
static unsigned int pad = 0;
static __u64 tmp = 0;
static inline void jent_get_nstime (__u64 *out)
{

tmp += 23;
pad ++;
*out = (tmp + pad);

}

The code adds 24 in the first loop, 25 in the second, 26 in the third, 27 in
the fourth, and so forth.

Again, the stuck test ensures that the time stamp is rejected.

4.3.3 Disabling of System Features

The CPU jitter is based on properties of the system, such as caches. Some of
these properties can be disabled in either user space or kernel space. The effect
on such changes is measured in appendix 6.1.

5 Entropy Behavior
As the previous chapter covered the statistical properties of the CPU Jitter
random number generator, this chapter provides the assessment of the entropy

29

behavior. With this chapter, the second vital aspect of random number gener-
ators mentioned in chapter 1 is addressed.

The CPU Jitter random number generator does not maintain any entropy es-
timator. Nor does the random number generator tries to determine the entropy
of the individual recorded time deltas that are fed into the entropy pool. There
is only one basic rule that the CPU Jitter random number generator follows:
upon completion of the entropy collection loop, the entropy pool contains 64 bit
of entropy which are returned to the caller. That results in the basic conclusion
of the random number bit stream returned from the CPU Jitter random number
generator holding one bit of entropy per bit of random number.

Now you may say, that is a nice statement, but show me the numbers. The
following sections will demonstrate the appropriateness of this statement.

Section 5.1 explains the base source of entropy for the CPU Jitter random
number generator. This section explains how the root cause of entropy is visible
in the CPU Jitter random number generator.

Before we start with the entropy discussion, please let us make one issue
perfectly clear: the nature of entropy, which is an indication of the level of
uncertainty present in a set of information, can per definition not be calculated.
All what we can do is try to find arguments whether the entropy estimation the
CPU Jitter random number generator applies is valid. Measurements are used
to support that assessment. Moreover, the discussion must contain a worst case
analysis which gives a lower boundary of the entropy assumed to be present in
the random number bit stream extracted from the CPU Jitter random number
generator. The lower boundary, however, is considered for theoretical discussion
only because it deactivates one important aspect of the Jitter RNG.

5.1 Base Entropy Source
As outlined in chapter 3, the variations of the time delta is the source of entropy.

The design specification already indicates that multiple noise sources support
the operation of the RNG. The following subsections discuss the individual noise
sources.

All diagrams include the value of the Shannon Entropy H which is calculated
with the following formula:

H = −
N∑

i=1
pi · log2(pi)

where N is the number of samples, and pi is the probability of sample i. As
the Shannon Entropy formula uses the logarithm at base 2, that formula results
in a number of bits of entropy present in an observed sample.

5.1.1 Noise Sources Depicted

Unlike the graphs outlined in chapter 2 where two time stamps are invoked
immediately after each other, the CPU Jitter random number generator places
the LFSR loop between each time stamp gathering. That implies that the CPU
jitter over the LFSR loop is measured and used as a basis for entropy.

Considering the fact that the CPU execution time jitter over the LFSR loop
is the source of entropy, we can determine the following:

30

• The LFSR loop shall inject the time delta value into the entropy pool.

• The delta of two time stamps before and after the folding loop is given to
the LFSR loop to be injected into the entropy pool.

The use cases of the Jitter RNG assume that the entropy of the time delta
exceeds 1 bit of entropy – if it is less than one bit of entropy, the caller has to
invoke the Jitter RNG more often.

Tests are implemented that measure the variations of the time delta over an
invocation of the LFSR loop. The tests are provided with the tests_userspace/timing/jitterentropy-foldtime.c
test case for user space, and the stat-fold DebugFS file for testing the kernel
space.

The design of the LFSR loop in section 3.1.3 explains that the number of
LFSR loop iterations varies between 20 and 24 iterations. The testing of the
entropy of the LFSR loop must identify the lower boundary and the upper
boundary. The lower boundary is the minimum entropy the LFSR loop at least
will have: this minimum entropy is the entropy observable over a fixed LFSR
loop count. The test uses 20 as the fixed LFSR loop count. On the other hand,
the upper boundary of the entropy is set by allowing the LFSR loop count to
float freely within the above mentioned range.

It is expected that the time stamps used to calculate the LFSR loop count
is independent from each other. Therefore, the entropy observable with the
testing of the upper boundary is expected to identify the entropy of the CPU
execution time jitter. Nonetheless, if the reader questions the independence,
the reader must conclude that the real entropy falls within the measured range
between the lower and upper boundary.

Figure 5.1 presents the lower boundary of the LFSR loop executing in user
space of the test system. The graph shows two peaks whereas the higher peak is
centered around the execution time when the code is in the CPU cache. For the
time when the code is not in the CPU cache – such as during context switches
or during the initial invocations – the average execution time is larger with the
center at the second peak. In addition, figure 5.3 provides the upper boundary
of the LFSR loop. With the graph of the upper boundary, we see 16 spikes
which are the spikes of the lower boundary scattered by the LFSR loop counter.
If the LFSR loop counter is 20, the variation of the time delta is centered around
a lower value than the variations of a LFSR loop counter of 21 and so on. As
the variations of the delta are smaller than the differences between the means
of the different distributions, we observe the spikes.

The following graphs use the time deltas of 10,000,000 invocations of the
LFSR loop. To eliminate outliers, time delta values above the number outlined
in the graphs are simply cut off. That means, when using all values of the time
delta variations, the calculated Shannon Entropy would be higher than listed in
the legend of the graphs. This cutting off therefore is yet again driven by the
consideration of determining the worst case.

The CPU Jitter RNG is based on two noise sources. The following graphs
depict the LFSR noise source separately from the memory access noise source as
the memory access noise source may be disabled during allocation. The following
graphs show the memory access noise source with the lowest set memory accesses
to show the additional impact of just memory accesses – the graph is marked as
“constant memory access´´. To show the additional noise picked up with the

31

variations of the memory access loop, additional graphs are added marked as
“variating memory access´´. Graphs for varying memory accesses are not shown
any more as they just show a more or less perfect rectangular distribution (i.e.
the varying memory accesses now make the noise sources even better).

Figure 5.1: Lower boundary of entropy over LFSR loop in user space

Figure 5.2: Lower boundary of entropy over LFSR loop and constant memory
access in user space

32

Figure 5.3: Upper boundary of entropy over LFSR loop in user space

Figure 5.4: Upper boundary of entropy over LFSR loop and constant memory
access in user space

In addition to the user space measurements, figures 5.5 and 5.6 present the
lower and upper boundary of the LFSR loop execution time variations in kernel
space on the same system. Again, the lower boundary is above 2 bits and the
upper above 6 bits of Shannon Entropy.

33

Figure 5.5: Lower boundary of entropy over LFSR loop in kernel space

Figure 5.6: Upper boundary of entropy over LFSR loop in kernel space

As this measurement is the basis of all entropy discussion, appendix F shows
the measurements for many different CPUs. All of these measurements show
that the lower and upper boundaries are always much higher than the required
one bit of entropy with exceptions. All tests are executed with optimized code as
even a worst case assessment and sometimes with the non-optimized compilation

34

to show the difference. For one CPU, section F.26 shows that the lower boundary
is below 1 bit of Shannon Entropy. When re-performing the test with non-
optimized code, as required in section 3.7, the lower boundary is well above 2
bits of entropy and therefore sufficient for the entropy collection loop. This test
shows that disabling optimizations is vital for the CPU Jitter random number
generator. In addition, when enabling the memory access, the timing variations
are even much greater, sufficient for the RNG operation.

For the other CPUs whose lower entropy is below 1 bit and the jent_entropy_init
function allows this CPU, statistical tests are performed to verify that no cycles
are present. This implies that the entropy is closer to the upper boundary and
therefore well above 1 bit. But again, when enabling memory accesses entropy
rises way above 1 bit.

The reader should also consider that the measured Shannon Entropy is a
conservative measurement as the test invokes the LFSR loop millions of times
successively. This implies that for the entire duration of the test, caches, branch
prediction units and similar are mostly filled with the test code and thus have
hardly any impact on the variations of the time deltas. In addition, the test
systems are kept idle as much as possible to limit the number of context switches
which would have an impact on the cache hits. In real-life scenarios, the caches
are typically filled with information that have an big impact on the jitter mea-
surements and thus increase the entropy.

With these measurements, we can conclude that the CPU execution jitter
over the LFSR loop is always more than double the entropy in the worst case
than required. Thus, the measured entropy of the CPU execution time jitter
that is the basis of the CPU Jitter random number generator is much higher
than required.

The reader may now object and say that the measured values for the Shannon
Entropy are not appropriate for the real entropy of the execution time jitter,
because the observed values may present some patterns. Such patterns would
imply that the real entropy is significantly lower than the calculated Shannon
Entropy. This argument can easily be refuted by the statistical tests performed
in chapter 4. If patterns would occur, some of the statistical tests would indicate
problems. Specifically the Chi-Squared test is very sensitive to any patterns.
Moreover, the “anti” tests presented in section 4.3 explain that patterns are
easily identifiable.

Fast Fourier Transformation When applying a Fast Fourier Transforma-
tion transformation to the raw time delta input data before LFSR, an interesting
observation can be made: there is no noticeable pattern in the raw time delta.
Only one spike is visible: the expected spike at the zero point. Even when
applying the FFT to the oldest or smallest CPUs, no big spikes are visible.

FFTs are calculated on the time deltas when setting the memory access loop
numbers and the LFSR loop numbers to the minimum – i.e. without variations
added by these different loop sizes. Regardless of the type of CPU the FFT is
calculated for, either a perfect rectangular distribution with some bubbling is
visible. The second FFT is applied to the time deltas of the normal operation.
Again, an almost perfect rectangular distribution is seen.

In the following, example graphs for a small CPU of a MIPS 4Kec V6.8 is
shown. Note, the bigger the CPUs the more perfect FFTs are seen. To make

35

the graphs readable, the spike at the zero point is eliminated.

Figure 5.7: FFT of minimum LFSR and memory access loop counts

Figure 5.8: FFT of normal operation of LFSR and memory access loop counts

Impact of Frequency Scaling and Power Management on Execution
Jitter When measuring the execution time jitter on a system with a number of
processes active such as a system with the X11 environment and KDE active, one
can identify that the absolute numbers of the execution time of a LFSR loop is
higher at the beginning than throughout the measurement. The behavior of the
jitter over time is therefore an interesting topic. The following graph plots the
first 100,000 measurements8 where all measurements of time deltas above 600
were removed to make the graph more readable (i.e. the outliers are removed).
It is interesting to see that the execution time has a downward trend that
stabilizes after some 60,000 LFSR loops. The downward trend, however, is not

8The measurements of the LFSR loop execution time were re-performed on the same system
that is used for section 5.1. As the measurements were re-performed, the absolute numbers
vary slightly to the ones in the previous section.

36

continuously but occurs in steps. The cause for this behavior is the frequency
scaling (Intel SpeedStep) and power management of the system. Over time,
the CPU scales up to the maximum processing power. Regardless of the CPU
processing power level, the most important aspect is that the oscillation within
each step has an similar “width” of about 5 to 10 cycles. Therefore, regardless
of the stepping of the execution time, the jitter is present with an equal amount!
Thus, frequency scaling and power management does not alter the jitter.

Figure 5.9: Variations of the execution time jitter over time when performing
LFSR loop jitter measurements with Frequency Scaling / Power Management

When “zooming” in into the graph at different locations, as done below, the
case is clear that the oscillation within each step remains at a similar level.

37

Figure 5.10: Variations of the execution time jitter over time when performing
LFSR loop jitter measurements with Frequency Scaling / Power Management
– “zoomed in at measurements 1,000 - 3,000”

Figure 5.11: Variations of the execution time jitter over time when performing
LFSR loop jitter measurements with Frequency Scaling / Power Management
– “zoomed in at measurements 42,000 - 44,000”

The constant variations support the case that the CPU execution time jitter

38

is agnostic of the with frequency scaling and power management levels.
To compare the measurements with disabled frequency scaling and power

management on the same system, the following graphs are prepared. These
graphs show the same testing performed.

Figure 5.12: Variations of the execution time jitter over time when performing
LFSR loop jitter measurements with Frequency Scaling / Power Management
disabled

39

Figure 5.13: Variations of the execution time jitter over time when performing
LFSR loop jitter measurements with Frequency Scaling / Power Management
disabled – “zoomed in at measurements 1,000 - 3,000”

Figure 5.14: Variations of the execution time jitter over time when performing
LFSR loop jitter measurements with Frequency Scaling / Power Management
disabled – “zoomed in at measurements 42,000 - 44,000”

40

6 Assessment of Noise Sources
The quality of the CPU Jitter RNG rests on the assumption that the execution
timing variations cannot be predicted. In addition, any influence that would di-
minish the entropy below one bit per timing measurement would also adversely
affect the CPU Jitter RNG. Finally, any CPU manipulation that has the capa-
bility to introduce patterns also will affect the quality of the CPU Jitter RNG.

The following sections discuss the root cause of the noise sources of the CPU
Jitter RNG. These tests shall help understand where the noise originates.

Before outlining the different causes of the variations in the Jitter noise
source, it is important to understand that there are the two factors contributing
to the uncertainty of the timing operation and thus to the gathering of entropy:

• The execution time of a fixed sequence of CPU instructions is not fully
predictable. This is due to the complex nature of CPUs, including the
branch prediction, and wait states the CPU must add to synchronize with
the instruction fetching including the use of the L1 instruction cache (if
present) among others.

• The access time to memory is also not fully predictable due to the state
of the L1 through L3 caches, and the TLB cache.

Both contributing factors to the gathering of entropy in the Jitter RNG are
invoked in a sequential order as outlined in section 3.1. Both factors provide
its variations independent of each other. Thus the entropy each individual fac-
tor provides are additive to obtain the final entropy rate of the Jitter RNG.
This finally implies that if one root cause for one contributing factor, for ex-
ample the L1 through L3 caches, do provide a sufficient amount of entropy,
the other contributing factor is yet unaffected and may still provide sufficient
entropy. Therefore, both contributing factors equally contribute to the Jitter
RNG entropy rate without dominating each other.

The test results presented in appendix F shows the test results with a Jitter
RNG memory size of 2048 bytes. Almost all tested machines have an L1 cache
that is larger which implies that the shown measurements show the Jitter RNG
behavior when accessing L1 cache plus the CPU instruction timing variations.
Almost all shown systems deliver an entropy rate of more than 1 bit of entropy
per time delta.

6.1 CPU Execution Timing Jitter
This analysis tries to answer the question:

Why is jitter visible in execution timing? How can it be quantifed?
The bare metal testing mechanism discussed in section 6.3 offers an analysis

tool to gain more insights into the behavior of the CPU without interference by
an operating system.

The following tests deviate slightly from all preceding tests by adding vari-
ous cache flush strategies to observe any potential changes in the jitter measure-
ments to gain an understanding of the CPU behavior. All tests are executed
on the same hardware of an Intel Core i7 2nd generation system with the same
operating system of Fedora 19 and the Linux kernel 3.11. The test system is
configured to execute without power management and with Speedstep disabled

41

to prevent additional interference. The baseline is the execution of the jitter
measurement without any special operations. That baseline shows the follow-
ing entropy numbers:

• Lower boundary of entropy: 3.06

• Upper boundary of entropy: 9.21

All of the following tests are performed independently of each other which means
that one test does not contain the code changes of another test unless specifically
noted. Therefore, the measurements can always be compared to the baseline
measurements.

The testing enumerated below can all be re-performed on the bare metal
tester outlined in section 6.3 by selecting test case 0 and enabling or disabling
the discussed CPU mechanisms.

6.1.1 Serialization Instruction

Using serialization instructions, the execution jitter can be completely elimi-
nated.

• Baseline test code which eliminates all jitter by using a serialization in-
struction:

asm volatile (
" cpuid \n\t"
" cpuid \n\t"
" cpuid \n\t"

);
asm volatile (" rdtsc " : "=A" (a));
asm volatile (" rdtsc " : "=A" (b));

The delta between the variables a and b does not vary. Therefore, the
CPU execution timing variations draw from on the internal state of the
CPU which a serialization instruction can reset.

• Now, considering that the serialization operation eliminates the variation
as seen in the preceding, an attack against the RNG can be planned.
When executing the following code on each CPU, the question now arises,
whether the statistical properties of the RNG output would change:

void main(void)
{

asm volatile (" cpuid ");
}

While that code is now executing on all CPUs to ensure that the entropy
collection code of the RNG executes on a CPU where this serialization
instruction has been executed before hand, the statistical properties of
the RNG output does not show any weaknesses. The Chi-Squared test
result of the binary output of the RNG marks it as white noise.

• Placing the invocation of the serialization instruction into a function:

42

void cpuid (void)
{

asm volatile (
" cpuid \n\t"
" cpuid \n\t"
" cpuid \n\t"

);
}
void test(void)
{

cpuid ();
asm volatile (" rdtsc " : "=A" (a));
asm volatile (" rdtsc " : "=A" (b));

}

With this invocation of the serialization instruction, small variations start
to appear.

• When re-implementing the function call with assembler code, however,
still no variations are visible:

asm volatile (
"jl 1f\n"
"sub :\t"
" cpuid \n\t"
"ret\n\t"
"1:"
"call sub\n\t"

);
asm volatile (" rdtsc " : "=A" (a));
asm volatile (" rdtsc " : "=A" (b));

Thus, it is not clear what the difference between this code and the pre-
ceding code is.

• Even when enlarging the memory space between the CPUID instruction
and the time stamp gathering, still no variations are visible:

asm volatile (
"jl 1f\n"
"sub :\t"
" cpuid \n\t"
"ret\n\t"
"1:"
"nop\n\t" // This instruction now 500 times
"call sub\n\t"

);
asm volatile (" rdtsc " : "=A" (a));
asm volatile (" rdtsc " : "=A" (b));

Thus, no proximity of the serialization instruction to the timing has no
impact to the absence of variations.

• Placing the serialization instruction inbetween the time reading instruc-
tions:

asm volatile (
" cpuid \n\t"
" cpuid \n\t"
" cpuid \n\t"

);
asm volatile (" rdtsc " : "=A" (a));
asm volatile (" cpuid ");
asm volatile (" rdtsc " : "=A" (b));

43

This code now shows significant variations of the execution time. This
means that the flushing of the CPU state with the serialization instruction
varies significantly with no apparent reason.

• When using other serialization instructions, like WBINVD, or INVD, the same
results as with CPUID are visible. That means that all serialization in-
structions have an equal effect on the execution timing jitter. Therefore,
invoking a serialization instruction causes the CPU state that is the basis
of the jitter to reset.

• When replacing the serialization function with a pipeline flush using the
MFENCE instruction, the execution variations did not decrease compared to
simply reading the timing values without any special treatment. There-
fore, the pipeline has no effect on the CPU execution timing variations.

Additional similar tests are performed. The interpretation of the results, how-
ever, is not possible at this point. This means that a theory of the noise source
cannot be formulated for the CPU execution timing jitter. Thus, it can only be
concluded that noise is visible in normal operation, and even when attacking the
RNG with the method causing the variations to vanish by using serialization
instructions, the noise source remains operational.

The next sections show other attempts to eliminate the CPU execution tim-
ing variations which, however, are not successful.

6.1.2 Prevention of System Call And Branch Prediction Interference

The measurements generated in the following are performed by measuring the
time duration of one LFSR loop and immediately using printf to write it to
standard out. This write-out involves system calls and thus a modification of the
caches, branch prediction, pipelines and TLB beyond the LFSR operation. The
difference now is that instead of simply taking the measurement and writing it
out, the test takes the measurements 1.000 times in one row and prints out the
last value. That way, the first 999 loop iterations shall cancel out the impact of
the preceding printf to the current measurement:
int i = 0;
for(i=0; i <1000; i++)

duration = jent_fold_var_stat (NULL , 0);
for(i=0; i <1000; i++)

duration_min = jent_fold_var_stat (NULL , 1);
printf ("% llu %llu\n", duration , duration_min);

• Lower boundary of entropy: 3.86

• Upper boundary of entropy: 9.48

6.1.3 Flush of CPU Instruction Pipeline

The CPU instruction pipeline can be flushed with the MFENCE CPU instruc-
tion. The flush of the pipeline is performed right before the invocation of one
measurement. The following code illustrates that:
define mb () asm volatile (" mfence ":::" memory ")
mb ();
duration = jent_fold_var_stat (NULL , 0);
mb ();
duration_min = jent_fold_var_stat (NULL , 1);
mb ();

44

• Lower boundary of entropy: 3.66

• Upper boundary of entropy: 9.33

6.1.4 Flush of CPU Caches

The different CPU caches can be flushed with the WBINVD CPU instruction.
The flush of the caches is performed right before the invocation of one measure-
ment. The following code illustrates that:
define wbinvd () asm volatile (" wbinvd ": : :" memory ");
wbinvd ();
duration = jent_fold_var_stat (NULL , 0);
wbinvd ();
duration_min = jent_fold_var_stat (NULL , 1);
wbinvd ();

• Lower boundary of entropy: 6.43

• Upper boundary of entropy: 10.58

6.1.5 Disabling of Preemption

The preemption of the execution of the LFSR loop may imply that scheduling
happens while the loop is executing. Inside the kernel, preemption can be
disabled as follows:
preempt_disable ();
duration = jent_fold_var_stat (NULL , 0);
duration_min = jent_fold_var_stat (NULL , 1);
preempt_enable ();

• Lower boundary of entropy: 3.46

• Upper boundary of entropy: 8.68

6.1.6 TLB Flush

The flush of all (non-global) TLB entries is achieved by modifying the CR3
register. Inside the kernel, modification of the CR3 register is performed by
reading and writing the register as follows:
native_write_cr3 (native_read_cr3 ());
duration = jent_fold_var_stat (NULL , 0);
duration_min = jent_fold_var_stat (1);

• Lower boundary of entropy: 3.22

• Upper boundary of entropy: 8.52

6.1.7 Pinning of Entropy Collection to one CPU

The pinning of the process that performs the measurements to one CPU can be
performed by creating a CPUSET:
mkdir /sys/fs/ cgroup / cpuset / foldtime
/bin/echo 2 > cpuset .cpus
/bin/echo 0 > cpuset .mems
/bin/echo <PID_of_proc > > tasks
/bin/echo 1 > cpuset . mem_hardwall

45

• Lower boundary of entropy: 3.32

• Upper boundary of entropy: 9.12

6.1.8 Disabling of Frequency Scaling and Power Management

Modern CPUs allow frequency scaling, including the Intel SpeedStep technol-
ogy, the Intel TurboBoost, the power management of the CPU and peripherals.
These techniques are used to conserve power. As these mechanisms may add
variations, all these mechanisms are deactivated using the BIOS on the test
machine.

• Lower boundary of entropy: 2.59

• Upper boundary of entropy: 9.25

The lower boundary shows a significant drop in variations by around 0.5 bits
of entropy. Yet, the drop does not affect the quality of the RNG. The cause
for the drop in variations is the different patterns of variations as outlined in
section 5.1.1.

6.1.9 Disabling of L1 and L2 Caches

The next test disables the L1 and L2 caches of the CPU and reperforms the
measurement of the jitter again. As the disabling of the caches can only be com-
pleted in kernel space, the test was executed using the kernel module and reading
the exported interface /sys/kernel/debug/jitterentropy/stat-fold.

To disable the caches, the following code was added to the initialization
function of the kernel module:
__asm__ (" push %rax\n\t"

"mov %cr0 ,% rax ;\n\t"
"or $(1 << 30) ,% rax ;\n\t"
"mov %rax ,% cr0 ;\n\t"
" wbinvd \n\t"
"pop %rax"

);

In addition, the MTRR was disabled with the following command before the
mentioned file was read:
echo " disable =00" >| /proc/mtrr

The disabling of the caches is really noticeable as the system gets really
slow by orders of magnitudes! So, if you redo the testing, ensure that nothing
executes, perform the tests on a console (not within X11) to get a system that
is somewhat responsive to your commands.

The measurements of the variation contain a large number of outliers which
are removed to calculate the entropy.

• Lower boundary of entropy: 8.48

• Upper boundary of entropy: 11.53

As the lower boundary is already that high and due to the problem of removing
the outliers from the measurements of the upper boundary, it is questionable
whether the value for the upper boundary is helpful as it surely overstates the
worst case by a large degree.

46

6.1.10 Disabling of L1 and L2 Caches And Interrupts

The test documented in appendix 6.1.9 is re-performed with the following code
modification in the kernel module function jent_debugfs_statfold_read:
local_irq_save (flags);
local_irq_disable ();
duration = jent_fold_var_stat (NULL , 0);
duration_min = jent_fold_var_stat (NULL , 1);
local_irq_restore (flags);
local_irq_enable ();

The code change disables all interrupts on the current CPU while executing
the LFSR loop and the time measurement. After the measurement is completed
for one round, it is re-enabled again.

Similarly to appendix 6.1.9, the variation measurement contains a large num-
ber of outliers. When removing them and limiting to the set of values to consider
the worst case, the following lower entropy value is calculated. For the upper
boundary value, the removal of the outliers is not really possible. Therefore,
the given value may overstate the worst case significantly.

• Lower boundary of entropy: 8.37

• Upper boundary of entropy: 12.11

6.1.11 Disabling of All CPU Mechanisms

In the preceding subsections various CPU mechanisms were selectively disabled.
This section now combines the disabling of all these mechanisms to analyze
whether any combination of disabling CPU mechanisms changes the entropy
statement.

The following table contains the test results. It starts with the test that
combines the disabling and changing of all the CPU mechanisms outlined in the
preceding sections9. Each following row allows some more CPU mechanisms as
indicated. For each test, the upper and lower boundary of the Shannon entropy
is calculated and listed. The tests were executed on an absolute quiet system
that excludes X11 and any graphical user interface.

Disabled / Altered CPU mechanisms Upper Lower
Prevention of System Call interference
Flush of CPU instruction pipeline

Flush of CPU caches
Disabling of Preemption

TLB Flush
Disabling of Frequency Scaling / Power Mgt

Disabling of MTRR
Disabling of L1 and L2 caches

Disabling of Interrupts

8.36 6.39

9Note, the tests must be executed in kernel space where the CPU pinning capability using
cgroups is not available.

47

Disabled / Altered CPU mechanisms Upper Lower
Prevention of System Call interference
Flush of CPU instruction pipeline

Flush of CPU caches
Disabling of Preemption

TLB Flush
Disabling of Frequency Scaling / Power Mgt

Disabling of MTRR
Disabling of L1 and L2 caches

Disabling of Interrupts

N/A 4.2810

Prevention of System Call interference
Flush of CPU instruction pipeline

Flush of CPU caches
Disabling of Preemption

TLB Flush
Disabling of Frequency Scaling / Power Mgt

Disabling of L1 and L2 caches
Disabling of Interrupts

5.30 1.61

Prevention of System Call interference
Flush of CPU instruction pipeline

Flush of CPU caches
Disabling of Preemption

TLB Flush
Disabling of Frequency Scaling / Power Mgt

Disabling of Interrupts

5.51 1.59

Prevention of System Call interference
Flush of CPU instruction pipeline

Flush of CPU caches
Disabling of Preemption

TLB Flush
Disabling of Frequency Scaling / Power Mgt

6.88 3.10

Prevention of System Call interference
Flush of CPU instruction pipeline

Flush of CPU caches
TLB Flush

Disabling of Frequency Scaling / Power Mgt

6.91 3.06

Prevention of System Call interference
Flush of CPU instruction pipeline

Flush of CPU caches
Disabling of Frequency Scaling / Power Mgt

6.90 2.65

Prevention of System Call interference
Flush of CPU instruction pipeline

Flush of CPU caches
Disabling of Frequency Scaling / Power Mgt

Disabling of Interrupts

5.19 1.46

10removal of outliers

48

Disabled / Altered CPU mechanisms Upper Lower
Prevention of System Call interference
Flush of CPU instruction pipeline

Disabling of Frequency Scaling / Power Mgt
Disabling of Interrupts

5.94 2.28

Prevention of System Call interference
Disabling of Frequency Scaling / Power Mgt

Disabling of Interrupts

5.94 1.69

Prevention of System Call interference
Flush of CPU caches

Disabling of Frequency Scaling / Power Mgt
Disabling of Interrupts

5.87 1.89

Any CPU mechanism that has not been enabled as per table above will
always enlarge the CPU execution jitter based on the analyses on the jitter
measurements outlined in the previous sections. Therefore, these tests are dis-
regarded.

The combination of disabled CPU mechanisms which diminishes the CPU
execution jitter the most can be illustrated with the following code supplemented
by disabling the power management and frequency scaling in the system BIOS:
local_irq_save (flags);
local_irq_disable ();
wbinvd ();
mb ();
for(i=0; i <1000; i++)

duration = jent_fold_var_stat (0);
wbinvd ();
mb ();
for(i=0; i <1000; i++)

duration_min = jent_fold_var_stat (1);
wbinvd ();
mb ();
local_irq_restore (flags);
local_irq_enable ();

It is interesting that a particular combination of disabling CPU mechanisms
causes the jitter to drop more than to disable all CPU mechanisms. Moreover,
measuring the effect of disabling each CPU mechanism in isolation – as done in
the preceding subsections – shows no significant drop in jitter. A rationale for
this behavior cannot be given at this point.

Nonetheless, the measurements of the lower boundary would still much more
entropy than needed for the operation of the CPU Jitter RNG, let alone con-
sidering the upper boundary.

To support this conclusion, the above listed code was added to the function
jent_debugfs_read_func to apply the modifications to the regular random
number generation. In addition, the locking found in jent_drng_get_bytes_raw
must be removed to prevent complaints by the kernel for this test. Also, the
Von-Neumann unbiaser must be disabled. After compilation and insertion of
the kernel module, the file /sys/kernel/debug/jitterentropy/seed is to be
read. After the generation of 3MB of data, the smoke test using the ent tool is
performed to check the statistical behavior. The result is, as expected, appro-
priate:
$ ent /tmp/out && ent -b /tmp/out
Entropy = 7.999936 bits per byte.

49

Optimum compression would reduce the size
of this 2911816 byte file by 0 percent .

Chi square distribution for 2911816 samples is 257.43 , and randomly
would exceed this value 44.55 percent of the times .

Arithmetic mean value of data bytes is 127.5091 (127.5 = random).
Monte Carlo value for Pi is 3.146313017 (error 0.15 percent).
Serial correlation coefficient is -0.000537 (totally uncorrelated = 0.0).
Entropy = 1.000000 bits per bit.

Optimum compression would reduce the size
of this 23314880 bit file by 0 percent .

Chi square distribution for 23314880 samples is 0.06 , and randomly
would exceed this value 81.14 percent of the times .

Arithmetic mean value of data bits is 0.5000 (0.5 = random).
Monte Carlo value for Pi is 3.146391175 (error 0.15 percent).
Serial correlation coefficient is -0.000004 (totally uncorrelated = 0.0).

6.2 Memory Access Testing
The previous section covered the exclusive analysis of the noise source of the
LFSR operation. This section in addition covers the exclusive assessment of the
memory accesses and their impact on the timing variations.

The tests are all conducted with the test tool discussed in section 6.3.
For conducting the memory access testing, the test tool is used to review the

impact of the following settings – all other settings are left unchanged at their
default:

• Size of memory blocks: The description of the memory access noise source
explains that the memory used for measuring access times is segmented
into memory blocks. With the configuration of the size of memory blocks
the access pattern to the memory is altered.

• Number of memory blocks: In addition to the size of one memory block,
the number of used memory blocks defines the size of the entire mem-
ory used for access. The modification of the size of the entire memory
influences the number of memory addresses the CPU sees.

• Number of loop iterations to access memory: The design of the memory
access noise source implies that various bytes out of the allotted memory
are accessed. Each loop iteration reads and writes one byte.

6.2.1 Noise Source Discussion

Before measurements are presented, a discussion of the noise source needs to be
conducted. The following question must be answered:

Where does the noise come from?
In more technical terms, this question can be converted to: Why do memory

accesses exhibit variations when measuring the execution time of those memory
accesses?

The CPU of a system executes with the speed of the processor clock. That
means, the processing of one CPU instruction directly depends on the processor
clock when disregarding auxiliary processing, such as fetching the instruction

50

from memory. Now, if the CPU instruction happens to require additional data,
memory move instruction(s) must be used to move the data into CPU registers
in order to operate on the data. However, when fetching data from memory,
the CPU must synchronize itself with the access speed of the memory in order
for the memory fetch/store to succeed. The CPU must introduce wait states,
because CPU instruction for a memory fetch or store can only be performed if
the CPU clock to execute the memory access instruction must be aligned with
the clock the memory bus executes with.

Real life, however, is a bit more complicated with the addition of caches.
The caches execute at much higher speed as the real memory. The following
rule applies: L1 cache is the fastest, L2 is slower than L1, and L3 is again
slower than L2. That means, the number of wait states to synchronize the CPU
with L1 access windows is less compared to the number of wait states needed
to synchronize the CPU with L2. And similarly, the number of wait states for
L3 will be higher than the one for L2. Finally, the number of wait states for
memory will be higher than the ones for L3.

Now, the noise source rests on the basis that the time duration of wait states
is not predictable and observable.

To ensure that sufficient uncertainty is delivered to the random number
generator sufficient wait states shall be covered. Memory accesses are cached
with the typical caching strategy by the CPU to fill L1 first and try to obtain
predictions from it, followed by L2, followed by L3 and finally followed by real
memory accesses. As established, accesses to L1 will exhibit the smallest number
of wait states.

After performing some initial analyses, it was concluded that the access
attempts must be as large to overflow the L1 cache and “spill” over to L2
accesses. This is the reason for setting the size of the memory blocks, the
number of memory blocks as well as the number of access loops for the testing.
When considering all three variables, the total number of memory accesses must
definitely fill L1 and use at least parts of L2. This ensures that the wait states
the CPU incurs for accessing L2 deliver the main noise.

6.2.2 Noise Source Measurements

After understanding the root of the noise source, this subsections shows mea-
surements of the behavior of the noise source to answer the question:

Can the memory access timing variations be quantified?
The first test set analyzes the memory access variations in relationship to the

memory block size. The second test set analyzes the memory access variations
in relationship to number of memory accesses loop rounds.

Analysis of Memory Size When considering the discussion above around
the L1 through L3 caches, the following behavior of the Jitter RNG is expected::

• Having a memory block that is small enough that all memory accesses can
fit into an L1 cache exhibit the smallest amount of timing variations. Yet,
variations are present considering that even the L1 cache accesses are not
as fast as the CPU.

51

• If the memory block is large enough that its accesses will not fit into the
L1 memory but collectively into L1 + L2 cache, the memory access timing
variations are significantly larger compared to the sole L1 cache accesses.

• If the memory block is large enough to not fit into the L1 and L2 caches
together which implies that the L3 cache is utilized, the memory access
timing variations are again significantly larger compared to the L1 + L2
cache accesses.

• Finally, if the memory block is large enough to not fit into the collective L1
through L3 caches together, the CPU is forced to also access real memory.
Again, the memory access variations are significantly larger compared to
the L1 + L2 + L3 cache accesses.

Figure 6.1 shows the test results where the Jitter RNG is configured with dif-
ferent numbers of memory block sizes. This figure gives an impression of these
memory access timing variations in terms of an SP800-90B entropy rate depend-
ing on the memory size used by the Jitter RNG. The test system of a RISC-V
64 bit SiFive Freedom U740 SoC contains the following cache setup11:

• L1 data cache: 32 kBytes (note, the instruction cache is of no concern
here as only memory accesses are analyzed)

• L2 cache: 2 MBytes (note, the L1 cache is integrated into L2 which implies
that a memory block of larger than 2 MBytes is already spilling over)

• L3 cache N/A

10 15 20 25

0.
5

1.
0

1.
5

2.
0

2.
5

Memory Access Time Variations

Memory size in powers of 2

S
P

80
0−

90
B

 M
in

 E
nt

ro
py

Figure 6.1: Memory Access Timing Variations in Relation to Memory Size

11This system was chosen, because it exhibits the smallest amount of execution timing
variations discussed in section 6.1 which should be disregarded here.

52

Figure 6.1 shows the increasing of the memory access timing variations by
calculating the SP800-90B min entropy rate in relationship to the size of the
Jitter RNG memory block. It depicts clearly the stairs of a leap in entropy rate
when starting spill over into the next larger, but slower memory type:

• If the memory block size is less than 215 bytes, the L1 cache fully satisfies
the access requests. The min entropy value is between 0.4 and 0.5 bits.

• If the memory block size is less than or equal to 220 bytes, the L1/L2
caches fully satisfy the access requests. Yet, the min entropy value is
between 0.6 and 0.7 bits.

• If the memory block size is equal or larger than 221 bytes, L1, L2 and the
main memory is accessed. The min entropy value is now 2 bits or larger
but remains at this level.

In addition, it shows that with a small memory access that remains fully within
L1 cache, memory access timing variations exist. For this test, the absolute
value of the SP800-90B entropy rate is irrelevant, only the changes depending
on the memory size is to be considered.

The test is available with the tests/raw-entropy/recording_userspace/analyze_options.sh
tool set.

Analysis of Number of Memory Accesses The testing sets the number of
memory blocks to 64 and the size of one memory block to 32. The measurements
are taken by varying the number of memory access loops between 1 loop iteration
up to 256 iterations. The following graphs list the number of memory access
loops on the abscesses. The random number generator hard codes the number
of memory access loops to 128, which is marked with a green line in all the
graphs.

Each of the graphs contain three lines:

• The maximum and minimum observed values depicted with the blue lines.

• The mean of the observed values depicted with the red line. As expected,
the red line will always be within the two blue lines.

The first measurement shows the execution time of memory accesses depending
on the number of accesses. Figure 6.2 shows the execution time (i.e. the differ-
ence between an RDTSC invocation before the first memory access and an RDTSC
invocation after the last memory access).

53

Figure 6.2: Average time duration for memory accesses

As expected, the graph shows a linear increasing of the time duration when
memory is accessed. That means, each new memory access adds on average an
equal amount of execution time.

The next measurement provided with figure 6.3 shows the standard deviation
of the memory access time when increasing the number of memory accesses.
With the standard deviation, the size of the timing variation is depicted, i.e.
how “large” the variations of the memory access times fluctuate.

54

Figure 6.3: Standard deviation of time duration for memory accesses

The graph with the standard deviation clearly shows that it is an almost
linear increase of the standard deviation. This graph implies that the execution
variations increase linearly with the number of memory accesses. The conclusion
that can be drawn from this result is that each addition memory access attempt
will increase the timing variations and thus the uncertainty of the memory access
times.

To allow comparing the standard deviation values for the different memory
access times, the variation coefficient can be used. The variation coefficient
“normalizes” the standard deviation by dividing it with the mean value of the
time measurement. Figure 6.4 shows the variation coefficient for the different
memory access loop iterations.

55

Figure 6.4: Variation coefficient of time duration for memory accesses

The graph nicely show the stabilization of the variation coefficient the higher
the number of memory access loops. That stabilization, i.e. flattening of the
curve, demonstrates that the standard deviation in relation to the number of
memory accesses increases almost perfectly linearly. The spikes at the lower
number of memory access loops are due to higher impact of slight measuring
errors that have are more visible at the smaller measurements. Where do the
measuring errors come from? The code that invokes the RDTSC reading also is
affected by the memory access variations. When invoking that code twice (for
the beginning and ending time stamps) to measure only one or two memory
accesses, error added by the time reading is relatively higher than when having
several tens or hundreds of memory accesses.

Another enlightening statistic is the count of how many different timing val-
ues can be detected. The following graph presented in figure 6.5 now counts
how many different memory access times can be detected throughout the mea-
surement.

56

Figure 6.5: Number of different of time durations for memory accesses

Before interpreting the graph, please note that the test is set up to only
measure up to 200 different values. When considering the increase of the stan-
dard deviation as outlined above, the result of the graph with the number of
different time measurements is fully expected and understandable: the more
memory access loops are performed, the more different memory access times
are measured. This result is fully expected as the increase in the memory access
time variation is the factor that increases the standard deviation. The conclu-
sion can be drawn that the more memory accesses are performed, the stronger
the timing variations of these accesses are.

As a final graph, figure 6.6 shows the calculation of the Shannon Entropy
value for the timing measurement. As outlined in section 6.3, the Shannon En-
tropy values are subject to a calculation error that is up to one bit. As it cannot
be identified how large the error is at a given number of memory access loops,
the fluctuations in that graph must be interpreted accordingly – i.e. fluctuations
within one bit must be considered to show about equal measurements.

57

Figure 6.6: Shannon Entropy of time durations for memory accesses

The graph showing the Shannon Entropy values support all previous graphs
and conclusions by showing that the variations increase with the increase of
memory access loops.

The following final conclusion can be drawn from the measurements: Af-
ter having sufficient memory accesses to completely fill L1 and draw from L2
the timing variations and therefore the uncertainty regarding the total time for
memory accesses increases linearly with the number of measured memory ac-
cesses. This implies that memory accesses can be considered a good source for
entropy.

Note, the tests were partially redone in light of the results in section 6.1.
In this section, various CPU mechanisms were disabled with partially having
a severe impact on the measured timing variations. When altering the CPU
for the memory access timing measurement, the following findings based on
figure 6.7 apply:

58

Figure 6.7: Impact of Selectively Disabling of CPU Mechanisms on Memory
Access Timing Variations

• Using a serialization instruction like CPUID which removed all timing vari-
ations for the CPU execution time jitter does not have any impact on the
measurements for memory access timing.

• Flushing the branch prediction unit of the CPU does not have a measur-
able impact on the memory access timing variations.

• Flushing the instruction pipeline or the TLB cache does not show any
impact on the memory access timing variations.

• Disabling L1 and L2 caches showed a significant impact by dramatically
increasing the memory access timing variations. This is expected, because
the CPU now always has to access the main memory. As the accesses
to main memory are subject to more wait states than L2 accesses, the
variations must increase.

These additional results can be summarized as follows: Changing the CPU-

59

internal mechanisms for code execution has no impact on the memory access
timing variations. Changing how the CPU accesses memory by disabling the
caches significantly increases variations and thus entropy.

6.2.3 Memory Accesses and LFSR Loop

After independently discussing the memory access noise source, a view of the
combined noise of memory accesses and the LFSR loop should be performed.

The impact of the memory accesses to the LFSR loop can be easily shown
by depicting the execution time variations of just the LFSR loop and then the
LFSR loop together with the memory accesses. The following graphs show
the execution timing variations on a test system where just the LFSR loop is
challenged to produce sufficient variations. But when adding the memory access
variations, more than enough timing variations are recorded. First, the graphs
for the lower boundary are shown.

Figure 6.8: LFSR loop without memory accesses on Intel Xeon E5504 – lower
boundary

60

Figure 6.9: LFSR loop with memory accesses on Intel Xeon E5504 – lower
boundary

And now the graphs for the upper boundary.

Figure 6.10: LFSR loop without memory accesses on Intel Xeon E5504 – upper
boundary

61

Figure 6.11: LFSR loop with memory accesses on Intel Xeon E5504 – upper
boundary

Similar results are obtained for other systems. And these results speak for
themselves: memory access provide a significant source for variations in addition
to just the LFSR loop.

6.3 Noise Source Testing Without Operating System
The execution timing tests discussed in section 5.1 do not need any specific sup-
port from the operating system it runs on. Nonetheless, an operating system is
needed to allow the code to be executed on the CPU, i.e. to boot an environ-
ment that can execute some code where the results can somehow be conveyed.
Or not?

The Memtest86 tool is intended to be started directly from the boot loader
without any operating system running. In essence, that tool is its own operating
system with the sole purpose of executing some (memory) tests.

This tool now is used to allow running the CPU execution timing tests on
bare metal (err, on bare silicon) where no operating system with any parallel
threads or tasks can interfere. The Memtest86 tool is modified by removing all
memory tests and adding a number of CPU execution timing variation tests.
The code for the tool is provided in the directory test_baremetal/.

The goal with this testing is to eliminate the impact of the operating system
by only and exclusively executing the test cases on the CPU. No scheduling or
context switching will occur during the test execution. Even interrupts are not
processed while the tests execute. The test is implemented by only printing
the results after the completion of each test (i.e. not during the execution of a
test). This approach further reduces the impact of the test framework on the
measurements.

62

http://www.memtest.org

This measurement is the same measurement used for determining the lower
boundary of entropy throughout this document. This means that here only the
worst case is analyzed.

The following tests are implemented:
Test
No

Test Case Description

0 This is the baseline test by simply executing two time
stamp reads immediately after each other. This test shall

help finding the right CPU clearing and flushing
operations that eliminate all jitter.

1 This test covers the memory access operation by
measuring each memory access individually.

2 The entire entropy gathering operation is tested with this
test. The entropy gathering covers the LFSR loop

operation and the memory access operation. When setting
a configuration flag, the memory access operation can be
disabled to ensure that this test only measures the LFSR

loop operation. The execution time of each loop is
measured.

3 This test tries to measure some CPU characteristics by
placing well-crafted CPU instructions between the time
measurements. However, this test is considered irrelevant

for the CPU Jitter RNG measurement.
4 This test implements an automated invocation of test 1.

For test 1, the memory block size, the number of blocks
and the number of access loop iterations can be defined.
This test repeats test 1 after incrementing the counters.
Test results are displayed and can be transported to a

different machine using the Morse code.
For each test, the following options can be toggled:

• Enabling / Disabling of the L1/L2 cache during the measurements. To
ensure a responsive test framework, the caches are always enabled when
not executing tests. The caches are disabled as outlined in section 6.1.9.

• Enabling / Disabling L1/L2 Cache Flush: Before the execution of a test,
the L1/L2 cache can be flushed as discussed in section 6.1.4.

• Enabling / Disabling of Pipeline Flush: The CPU instruction pipeline can
be flushed before the execution of each test as outlined in section 6.1.3.

• Enabling / Disabling of TLB Flush: The TLB can be flushed before the
execution of each test as outlined in section 6.1.6.

• Enabling / Disabling of serialization: Before the execution of each test, a
serialization instruction is invoked. The code uses the CPUID instruction
invoked with zero as input parameters in EAX and EDX.

• Enabling / Disabling of Mem Jitter: This flag toggles whether the memory
access operation shall be invoked when testing the operation of the entropy
collection loop. By disabling this flag, the testing would only measure the
LFSR loop operation. This flag is only relevant for test 2.

63

• Enabling / Disabling of Morse Results: When the automated testing is
selected, the displayed test results of the statistical data calculated after
completing testing can be transferred to another computer using the Morse
code. As the test framework has no drivers, the only way to extract data
is by Morse code. The individual values are separated by commas and the
line separator is a dash. The WPM of the Morse communication is about
21. The following command can be used for capturing data:
demorse -f 21 -phw :0 -rCapture -lCapture -uleft -d8

For each test, the following numeric options can be set:

• Branch Pred Fl Lp: The number of branch prediction flush loops defines
the number of loops discussed in section 6.1.2.

• Memory Access Loops: The number of memory access loops can be set
here.

• Test Loops: The number of test executions before displaying the histogram
and various statistical data of measurements can be set here. Per default,
the value is set to 10,000. This value only applies to test 4.

• Number of Mem Blks: The number of memory blocks defining the size of
the memory to be accessed is set here.

• Jitter LFSR Iter: The number of loop iterations of the LFSR loop is
defined with this value. If set to zero, the automated selection of the
number of loop iterations as found in normal operation of the RNG is
done. This value applies to test 2 only.

• Memory Block Size: The size of one memory block in bytes is defined with
this configuration option.

For each test case, up to 200 different execution timing values are recorded.
These records form a histogram of the execution times. For each seen timing
value, the number of occurrences is recorded. Figure 6.12 illustrates the results
for the execution of the tests within a KVM instance12.

12This figure shall only serve as illustration for the discussion and the explanation on how to
interpret the results. The test results on a KVM cannot be interpreted as bare metal testing
and are therefore not used for any conclusions.

64

Figure 6.12: Execution of Bare-Metal CPU Execution Jitter Test on KVM

The test framework presents the following data:

• In the upper right corner, the currently executed test is referenced.

• In the row in the middle of the screen lists the selected options. All options
can be set by hitting the character c during operation.

• In the lower part, parts of the recorded histogram of timing data is shown.
A group of two numbers delimited by a colon shall be interpreted together.
The left hand side of the colon is the time duration for one LFSR loop
operation. The right hand side is the number of occurrences that were
counted for the test. The groups of value pairs can be considered to form
a histogram. For example, the following results are observable from the
screenshot above: The LFSR loop execution duration of 2312 cycles is
observed 1 time. The LFSR loop execution duration of 1552 cycles is
observed 12 times. The LFSR loop execution duration of 1524 cycles is
observed 26 times, And so on. Note, only a subset of all recorded histogram
slots is depicted due to space constraints.

• Below the histogram, different statistical values are shown with a divisor
used as a scaling factor in the following. To keep the test framework
minimal, only integer calculation is possible. To limit the calculation
error due to truncation performed with divisions, the formulas partially
increase the dividend to obtain values which are greater than 1. The reader
now must manually divide the shown number by the displayed divisor.
For each statistical value, the minimum observed value, the maximum
observed value and the mean value during the test cycle is listed. The
following statistical values are shown:

– Shannon Entropy: The calculation of the Shannon Entropy is calcu-

65

lated with the formula

H =
i≤200∑

i=1
pi · log2pi =

i≤200∑
i=1

si

l
· log2

si

l
=

i≤200∑
i=1

si

l
· (log2si − log2l)

where si specifies the number of observations in the histogram for one
timing value and l specifies the number of test loops performed. The
scaling factor f is added by modifying the formula above as follows

H · f =
i≤200∑

i=1

si · f
l
· (log2(si · f)− log2(l · f))

Warning: Due to the integer calculation for the logarithm, the result
of the formula overestimates the Shannon Entropy by up to one bit.
Therefore, that value shall not be used as a blank statement of the
entropy contained, but rather as a reference to the variations found in
the time deltas of the test sample. Nonetheless, the Shannon Entropy
is not lower than the calculated value minus one (bit). When compar-
ing this value with Shannon Entropy measurements from other tests,
always consider the Sigma and the Variation Coefficient in addition.

– Delta Mean: This value simply calculates the mean of the histogram
for one test execution:

x = si · vi

l
where si specifies the number of observations in the histogram for
one timing value, vi specifies the timing value in the histogram, and
l specifies the number of test loops performed.

– Sigma: The standard derivation is calculated by first calculating the
variance followed by calculating the square root of the variance. The
following formula is used:

σ =

√√√√i≤200∑
i=1

(vi − x) · (vi − x) · si

where the variables have the same meaning as outlined above.
– The variation coefficient is a scaling of the standard derivation to the

mean of the data set. The following formula shows the calculation of
the variation coefficient V

V = σ

x
As the variation coefficient can be smaller than 1, it is scaled with
the factor f

V · f = σ · f
x

– The number of switches specifies how often a different time delta
compared to the immediately previously seen time delta value is
recorded. For example, consider the following series of time delta
measurements: 100, 100, 101, 102, 102, 100. The number of switches
here is 3.

– The value for used slots simply lists how many of the 200 available
slots in the histogram are actually filled. That means, how many
different time delta values are recorded.

66

7 Standards Compliance
7.1 FIPS 140-2 Compliance
FIPS 140-2 specifies entropy source compliance in FIPS 140-2 IG 7.18. This sec-
tion analyzes each requirement for compliance. The general requirement to com-
ply with SP800-90B [Turan et al.(2018)Turan, Barker, Kelsey, McKay, Baish, and Boyle]
is analyzed in section 7.2.

7.1.1 FIPS 140-2 IG 7.18 Requirement For Statistical Testing

The Jitter RNG is provided with the following testing tools:

• Raw Entropy Tests: The tests obtain the raw unconditioned and unpro-
cessed noise information and records it for analysis with the SP800-90B
non-IID statistical test tool. The test tool includes the gathering of raw
entropy for one execution run as well as for the restart tests required in
SP800-90B section 3.1.4. The tool adjusts the data to be processed by
the SP800-90B statistical test tool. The test tool provides the SP800-90B
minimum entropy values for the lower and upper boundaries documented
in section 5. The testing was successfully conducted on Intel x86-based
systems, ARM-based systems including smart phones, embedded devices
with MIPS and ARM CPU, IBM POWER, IBM System-Z Mainframes.

• Jitter RNG Output Tests: The Jitter RNG output is captured and pro-
cessed with the SP800-90B IID statistical tests.

• Health Test Assessments: The Adaptive Proportion Test and Repetition
Count Tests are validated independently from the noise source to validate
the false-rejection rate as well as false acceptance rate. The test tool
invokes these tests while the Jitter RNG is operational. The test verifies
whether the online health tests trigger alarms.

• LSFR Tests: A test is available that feeds a monotonic counter to the
LFSR to verify that the output of the LFSR does not exhibit statistical
weaknesses. The output is processed with the statistical tool dieharder as
well as the SP800-90B IID statistical tests.

In particular the first test covers the test requirement of FIPS 140-2 IG 7.18.

7.1.2 FIPS 140-2 IG 7.18 Heuristic Analysis

FIPS 140-2 IG 7.18 requires a heuristic analysis compliant to SP800-90B section
3.2.2. The discussion of this SP800-90B requirement list is given in section 7.2.

7.1.3 FIPS 140-2 IG 7.18 Additional Comment 1

The first test referenced in section 7.1.1 covers this requirement.
The test invokes the raw noise components of the LFSR, the memory access

and the SP800-90B health tests in a tight loop to develop a worst case scenario.
The regular Jitter RNG operation adds additional entropy by the processing of
the LFSR and memory access results. Therefore, the test is considered to show
the lower boundary of the entropy measurements.

67

7.1.4 FIPS 140-2 IG 7.18 Additional Comment 2

The lowest entropy yield is analyzed by gathering raw entropy data solely over
the LFSR and memory access operations, disregarding additional processing
that also delivers entropy. In addition, the raw entropy gathering obtains the
lower and upper boundary raw entropy information as documented in section 5.

The lower boundary, however, is considered to be informative to support the
assessment of the Jitter RNG. Its results, however, should always be analyzed
with the caution that in production mode, the Jitter RNG does not exhibit this
behavior, i.e. the lower boundary is a worst case that deactivates an important
feature of the Jitter RNG.

The entropy is not considered to degrade when using the hardware within
the environmental constraints documented for the used CPU. The online health
tests are intended to detect entropy source degradation. The documentation
provided with the jitterentropy(3) man page explains the actions to be taken if
such entropy source degradation is detected.

7.1.5 FIPS 140-2 IG 7.18 Additional Comment 3

N/A as no approved conditioning component is used.

7.1.6 FIPS 140-2 IG 7.18 Additional Comment 4

The restart test is covered by the first test documented in section 7.1.1.

7.1.7 FIPS 140-2 IG 7.18 Additional Comment 6

The entropy assessment usually shows this conclusion – tests performed on In-
tel x86-based systems, ARM-based systems including smart phones, embedded
devices with MIPS and ARM CPU, IBM POWER, IBM System-Z Mainframe
show the following conclusions:

The entropy rate for all devices validated with the raw entropy tests outlined
in section 7.1.1 show that the minimum entropy values are always above one
bit of entropy per four data bits. The data bits are the least significant bits of
the time deltas generated by the raw noise.

Assuming the worst case that all other bits in the time delta have no entropy,
that entropy value above one bit of entropy applies to one time delta.

The Jitter RNG gathers at 64 time deltas for returning 64 bits of random
data and it uses an LFSR with a primitive and irreducible polynomial which is
entropy preserving. Thus, the Jitter RNG collected 64 times more than one bit
of entropy for its 64 bit output.

As the Jitter RNG maintains a 64 bit entropy pool, its entropy content
cannot be larger than the pool itself. Thus, the entropy content in the pool
after collecting 64 time deltas is the maximum of 64 bits and measured entropy
value from the previous steps. As long as the entropy measurement shows that
each time delta has more than one bit of entropy, the entropy rate of the Jitter
RNG random numbers is 64 bits of entropy per 64 bit data block.

This implies that the Jitter RNG data has (close to) 1 bit of entropy per
data bit.

68

7.1.8 FIPS 140-2 IG 7.18 Additional Comment 9

N/A as the raw entropy is a non-IID source and processed with the non-IID
SP800-90B statistical tests as documented in section 7.1.1.

7.2 SP800-90B Compliance
This chapter analyzes the compliance of the Jitter RNG to the SP800-90B
[Turan et al.(2018)Turan, Barker, Kelsey, McKay, Baish, and Boyle] standard con-
sidering the FIPS 140-2 implementation guidance 7.18 which alters some of the
requirements mandated by SP800-90B.

7.2.1 SP800-90B Section 3.1.1

The collection of raw data for the SP800-90B entropy testing documented in
section 7.1.1 uses 1,000,000 consecutive time deltas obtained in one execution
round.

The gathering post-LFSR output data using the test documented in sec-
tion 7.1.1 includes 1,000,000 consecutive 64 bit blocks. The individual Jitter
RNG blocks are concatenated to form a bit stream.

The restart tests documented in section 7.1.1 perform 1,000 restarts collect-
ing 1,000 consecutive time deltas.

7.2.2 SP800-90B Section 3.1.2

The entropy assessment of the raw entropy data including the restart tests
follows the non-IID track.

The entropy assessment of the LFSR output data follows the IID track.

7.2.3 SP800-90B Section 3.1.3

Please see section 7.1.7: The entropy of the raw noise source is believed to have
more than one bit of entropy per time delta to allow to conclude that one output
block of the Jitter RNG has (close to) one bit of entropy per data bit.

The first test referenced in section 7.1.1 performs the following operations
to provide the SP800-90B minimum entropy estimate:

1. Gathering of the raw entropy data of the time stamps for both, the lower
and upper boundary.

2. Obtaining the four least significant bits of each time delta and concatenate
them to form a bit stream. Two bit streams are gathered, one for the upper
and one for the lower boundary.

3. The bit stream is processed with the SP800-90B entropy testing tool to
gather the minimum entropy. Two minimum entropy values are obtained,
one for the lower and one for the upper boundary.

For example, on an Intel Core i7 Broadwell system, the SP800-90B tool shows
the following minimum entropy values when multiplying the SP800-90B tool
bit-wise minimum entropy by four since four bits are processed:

69

• Using the 4 least significant bits of the upper boundary time deltas:
3.551088

• Using the 4 least significant bits of the lower boundary time deltas: 2.969844

7.2.4 SP800-90B Section 3.1.4

For the restart tests, the raw entropy data is collected for 1,000 Jitter RNG
instances allocated sequentially. That means, for one collection of raw entropy,
one Jitter RNG instance is allocated. After the conclusion of the data gathering
it is deallocated and a new Jitter RNG instance is allocated for the next restart
test round.

Each restart test round stores its lower and upper boundary time deltas in
an individual file.

After all raw entropy data is gathered, one matrix for the lower and one for
the upper boundary is generated where each line in the matrix lists the time
deltas of one restart test round. The first column of the matrix, for example,
therefore contains the first time delta after initializing the Jitter RNG instance
for each restart test round.

The SP800-90B minimum entropy values column and row-wise is calculated
the same way as outlined above:

1. Gathering of the raw restart entropy data of the time deltas for both, the
lower and upper boundary.

2. Obtaining the four least significant bits of each time delta either row-wise
or column-wise and concatenate them to form a bit stream. There are
1,000 bit streams row-wise upper boundary, 1,000 bit streams row-wise
lower boundary, 1,000 bit streams column-wise upper boundary and 1,000
bit streams column-wise lower boundary generated.

3. The bit streams are processed with the SP800-90B entropy testing tool to
gather the minimum entropy.

In a following step, the sanity check outlined in SP800-90B section 3.1.4.3 is
applied to the restart test results. The steps given in 3.1.4.3 are applied.

For example, on an Intel Core i7 Broadwell system, the SP800-90B tool
shows the following minimum entropy values when multiplying the SP800-90B
tool bit-wise minimum entropy by four since four bits are processed:

• Using the 4 least significant bits of the upper boundary time deltas in
column-wise assessment – lowest entropy value of all 1,000 column entries:
2.196152

• Using the 4 least significant bits of the lower boundary time deltas in
column-wise assessment – lowest entropy value of all 1,000 column entries:
2.059508

• Using the 4 least significant bits of the upper boundary time deltas in
row-wise assessment – lowest entropy value of all 1,000 column entries:
2.196152

70

• Using the 4 least significant bits of the lower boundary time deltas in
row-wise assessment – lowest entropy value of all 1,000 column entries:
2.005840

• Sanity check of upper boundary 1,000 x 1,000 matrix passes with value of
one

• Sanity check of lower boundary 1,000 x 1,000 matrix passes with value of
one

With the shown values, the restart test validation passes according to SP800-
90B section 3.1.4.

7.2.5 SP800-90B Section 3.1.5

The LSFR operation of the Jitter RNG may be considered as a conditioning
component as defined in SP800-90B. Thus, the section 3.1.5 of SP800-90B is
relevant.

The input of the LFSR nin is fixed as follows: The LFSR is invoked 64 times
multiplied by the oversampling rate to generate one 64 bit output block. In case
the time measurement is considered stuck, the LFSR operation is performed but
the final replacement of the existing entropy pool value with the new value after
the LFSR operation is skipped.

The output of the LFSR nout is fixed as follows: The LFSR always operates
on a 64 bit output block.

7.2.6 SP800-90B Section 3.1.5.2

As the LFSR is considered to be a non-vetted conditioning component, the
entropy rate of the LFSR output is calculated as follows when using no over-
sampling rate:

• The size of the input nin: 64 time delta with a size of 64 bits each totaling
to 4096 bits.

• The entropy content of the input hin: The non-IID SP800-90B entropy
assessment of the raw input data discussed in section 7.2.3 is (and shall
be) at least 1 bit of entropy per time delta. When using high resolution
time stamps with a frequency of 1GHz or more, the assumed entropy is
much larger than 1 bit. Yet, for a worst case assessment presented in
this section the 64 time deltas are assumed to deliver at least 64 bits of
entropy.

• The size of the narrowest internal width nw: 64 bits since the LFSR
operation always processes the entire 64 bits of the entropy pool in one
step.

• The size of the output nout: 64 bits which is equal to the block size of the
Jitter RNG.

• The obtained entropy estimate h′: more than 1 bit for a time delta.

71

When using these values to calculate the Output_Entropy using the minimum
estimated entropy in one time stamp (1 bit of entropy per time delta), the
following lower boundary of the Output_Entropy value is calculated:

1. Phigh = 2−64 and Plow = 1−2−64

24096−1

2. n = min(64, 64) = 64

3. ψ = 24096−64 · 1−2−64

24096−1 + 2−64 ≈ 1−2−64

264 + 2−64

4. U = 24096−64 +
√

2 · 64 · 24096−64 · ln(2) = 24032 +
√

27 · 24032 · ln(2) =
24032 + 2 4039

2 ·
√
ln(2) ≈ 24032

5. ω = 24032 × 1−2−64

24096−1 ≈
1−2−64

264 ≈ 2−64

6. ω < ψ ⇒ −log2(ψ) = 63

Thus, the LFSR possesses the following entropy based on section 3.1.5.2 SP800-
90B:

hout = min(63, 0.999 · 64, 1× 64) = 63

The output block of the LFSR is awarded with 63 bits of entropy when
applying the lower boundary of 1 bit of entropy per time delta.

On the other hand, when assuming that all collected 64 time deltas in total
are identified to have 65 or more bits of entropy – i.e. 65

64 ≈ 1.016 bits of
entropy per individual time delta – and that value is confirmed by the entropy
measurement h′, the LFSR would have the output entropy of:

hout = min(64, 0.999 · 64, 1.078× 64) = 63.936

The value 63.936 bits of entropy per LFSR output block is the maximum
entropy value that is awarded to the LFSR output based on SP800-90B since
it is the hard limit is given by the constant 0.999 in the formula above. This
maximum is reached with the entropy measurement h′ ≥ 1.078.

7.2.7 SP800-90B Section 3.1.6

The Jitter RNG uses one basic noise source: the timing variances over compu-
tation operations and memory accesses. Thus, the requirements in this section
are trivially met.

The discussions above may refer to the LFSR and memory access noise
source independently. However, in terms of SP800-90B the noise source is the
one measurement of the execution time of a set of instructions. This set of
instructions is separated into the LFSR component and the memory access
component. The execution time of both components is measured in one step
causing these two components to operate as one noise source in terms of SP800-
90B.

7.2.8 SP800-90B Section 3.2.1 Requirement 1

This entire document is intended to provide the required analysis.

72

7.2.9 SP800-90B Section 3.2.1 Requirement 2

This entire document in general and chapter 7 in particular is intended to pro-
vide the required analysis.

7.2.10 SP800-90B Section 3.2.1 Requirement 3

There is no specific operating condition other than what is needed for the op-
erating system to run since the noise source is a complete software-based noise
source.

The only dependency the noise source has is a high-resolution timer which
does not change depending on the environmental conditions.

7.2.11 SP800-90B Section 3.2.1 Requirement 4

This document explains the architectural security boundary.
The boundary of the implementation is the source code files provided as part

of the software delivery. This source code contains API calls which are to be
used by entities using the Jitter RNG.

7.2.12 SP800-90B Section 3.2.1 Requirement 5

The output of the LFSR is the output of the Jitter RNG. I.e. the entropy
pool maintained by the LFSR holds the data that is given to the caller when
requesting a random number.

The noise source output without the LFSR is accessed with specific tools
which add interfaces that are not present and thus not usable when employing
the Jitter RNG in production mode. These additional interfaces are used for
gathering the data used for the analysis documented in section 7.2.3. These
interfaces perform the following operation:

1. Generate a time stamp.

2. Invoke the memory access operation

3. Invoke the LFSR operation

4. Generate a time stamp

5. Calculate the time delta using the two time stamps

These operations are used in the regular Jitter RNG operation as well. Ad-
ditional operations like health tests and others are not performed as part of
testing. Therefore, the testing interface invoke the heart of the Jitter RNG
which delivers entropy.

7.2.13 SP800-90B Section 3.2.1 Requirement 6

The test tools generating the raw entropy for assessment documented in sec-
tion 7.2.3 can and shall be executed on the same environment that executes the
assessed Jitter RNG. Thus, the raw entropy gathering uses the same operational
conditions also used for the Jitter RNG.

The Jitter RNG measures the execution time of certain operations. It rests
on the fact that all operations exhibit some form of execution time jitter. That

73

means that not only the heart of the Jitter RNG – the LFSR and the memory
access operations – but also the auxiliary operations like the health tests and
the processing of the user request add to the execution time jitter. As the raw
entropy collection solely measures the LFSR, memory access operations and the
health tests, the measured entropy is always lower than what the Jitter RNG
really exhibits. Therefore, the raw entropy measurements applies a worst case
scenario.

7.2.14 SP800-90B Section 3.2.1 Requirement 7

See section 7.2.4 for a description of the restart test.

7.2.15 SP800-90B Section 3.2.2 Requirement 1

This entire document provides the complete discussion of the noise source.

7.2.16 SP800-90B Section 3.2.2 Requirement 2

N/A - not mandated by FIPS IG 7.18. The lowest entropy yield is analyzed
with the lower boundary of the raw entropy assessment.

7.2.17 SP800-90B Section 3.2.2 Requirement 3

See section 7.2.6 for a discussion of the entropy provided by the Jitter RNG.
A stochastic model is not provided.

7.2.18 SP800-90B Section 3.2.2 Requirement 4

The noise source is expected to execute in the address space of the process
consuming the random data generated by the Jitter RNG. This implies that
the operating system process isolation and memory separation guarantees that
adversaries cannot gain knowledge about the Jitter RNG operation.

7.2.19 SP800-90B Section 3.2.2 Requirement 5

The output of the noise source is non-IID as it rests on the execution time of a
fixed set of CPU operations and instructions.

7.2.20 SP800-90B Section 3.2.2 Requirement 6

The raw noise generates time deltas with 64 bits size.

7.2.21 SP800-90B Section 3.2.2 Requirement 7

N/A as no additional noise source is implemented with the Jitter RNG.

7.2.22 SP800-90B Section 3.2.3 Requirement 1

The conditioning component is the LFSR. See section 7.2.6 for a discussion of
the input and output sizes.

74

7.2.23 SP800-90B Section 3.2.3 Requirement 2

N/A – the LFSR is a non-vetted conditioning component.

7.2.24 SP800-90B Section 3.2.3 Requirement 3

N/A – the LFSR does not use any keys.

7.2.25 SP800-90B Section 3.2.3 Requirement 4

N/A – the LFSR does not use any keys.

7.2.26 SP800-90B Section 3.2.3 Requirement 5

The conditioning component is the LFSR. See section 7.2.6 for a discussion of
the narrowest internal width and the output block size.

An LFSR with a primitive and irreducible polynomial is considered to not
diminish the entropy.

The LFSR processes the non-IID data of the 64 bit time delta values bit-
wise. That means that 64 LFSR operations are performed for each received
time delta value. This approach is not adversely affected when the input data
to the LFSR is non-IID.

The polynomial is tested with magma for being primitive and irreducible.

7.2.27 SP800-90B Section 3.2.4 Requirement 1

Test tools for measuring raw entropy are provided at the Jitter RNG web page.
These tools can be used by everybody without further knowledge of the Jitter
RNG.

7.2.28 SP800-90B Section 3.2.4 Requirement 2

The operation of the test tools for gathering raw data are discussed in sec-
tion 7.2.3. This explanation shows that the raw unconditioned data is obtained.

7.2.29 SP800-90B Section 3.2.4 Requirement 3

The provided tools for gathering raw entropy contains exact steps how to per-
form the tests. These steps do not require any knowledge of the noise source.

7.2.30 SP800-90B Section 3.2.4 Requirement 4

The raw entropy tools can be executed on the same environment that hosts the
Jitter RNG. Thus, the data is generated under normal operating conditions.

The set of test tools contains the LFSR test injecting a monotonic counter
and obtaining its output to demonstrate that the LFSR generates IID data.

7.2.31 SP800-90B Section 3.2.4 Requirement 5

The raw entropy tools can be executed on the same environment that hosts the
Jitter RNG. Thus, the data is generated on the same hardware and operating
system that executes the Jitter RNG.

75

https://www.chronox.de/jent.html

7.2.32 SP800-90B Section 3.2.4 Requirement 6

The test tools are publicly available at Jitter RNG web page allowing the repli-
cation of any raw entropy measurements.

7.2.33 SP800-90B Section 3.2.4 Requirement 7

The test invokes the raw noise components of the LFSR and the memory ac-
cess in a tight loop to develop a worst case scenario. The regular Jitter RNG
operation adds additional entropy by the processing of the LFSR and memory
access results. Therefore, the test is considered to show the lower boundary of
the entropy measurements.

7.2.34 SP800-90B Section 4.3 Requirement 1

The implemented health tests comply with SP800-90B sections 4.4 as described
in section 7.2.43.

7.2.35 SP800-90B Section 4.3 Requirement 2

When either health test fails, the API call to generate random numbers jent_read_entropy(3)
informs the caller about the failure with error codes.

Both health test failures are considered permanent failures. If one is trig-
gered, the current instance of the Jitter RNG will always remain in error state.
The documentation of the API call jent_read_entropy(3) explains that the
caller can only clear this error state by deallocating the Jitter RNG instance
followed by an allocation of a new Jitter RNG instance to reset the noise source.

When a health test failure occurs, the Jitter RNG block causing the failure
is not returned to the caller.

7.2.36 SP800-90B Section 4.3 Requirement 3

The following false positive probability rates are applied:

• RCT: The false positive rate is α = 2−30 and therefore complies with the
recommended false positive probability.

• APT: The cut-off value is set to 325 compliant to SP800-90B section 4.4.2
for non-binary data at a significance level of α = 2−30 with time stamp is
assumed to at least provide one bit of entropy, i.e. H = 1.

7.2.37 SP800-90B Section 4.3 Requirement 4

The Jitter RNG applies a startup health test of 1,024 noise source samples.
Additional tests are applied. The collected noise source samples are not re-used
for the generation of random numbers.

7.2.38 SP800-90B Section 4.3 Requirement 5

The noise source supports on-demand testing in the sense that the caller is
allowed to deallocate and reallocate a new Jitter RNG handle. During the
reallocation, the startup health tests are re-executed.

76

https://www.chronox.de/jent.html

7.2.39 SP800-90B Section 4.3 Requirement 6

The health tests are applied to the raw, unconditioned time delta data directly
obtained from the noise source before they are injected into the LFSR condi-
tioning component.

7.2.40 SP800-90B Section 4.3 Requirement 7

The health tests are documented with section 3.3.
The tests are executed as follows:

• During startup, the RCT and the APT are applied to 1,024 samples. The
startup test can be triggered again when the caller allocates a new Jitter
RNG handle.

• At runtime, the RCT is applied to each received time delta. The APT
collects the data from 512 samples. The APT health test is calculated
once all time deltas are recorded. The passing results of both tests shall
be confirmed before the generated Jitter RNG block is returned to the
caller.

7.2.41 SP800-90B Section 4.3 Requirement 8

There are no currently known suspected noise source failure modes.

7.2.42 SP800-90B Section 4.3 Requirement 9

N/A as the noise source is pure software. The software is expected to execute
on hardware operating in its defined nominal operating conditions.

7.2.43 SP800-90B Section 4.4

The health tests described in section 3.3 are applicable to cover the requirements
of SP800-90B health tests.

The SP800-90B compliant health tests are implemented with the following
rationale:

RCT The Repetition Count Test implemented by the Jitter RNG compares
two back-to-back time deltas to verify that they are not identical. If the
number of identical back-to-back time deltas reaches the cut-off value of
30, the RCT test raises a failure that is reported to the caller mandating
the caller to reset the Jitter RNG. The RCT uses the a cut-off value that
is based on the following: α = 2−30 compliant to FIPS 140-2 IG 9.8 and
compliant to SP800-90B which mandates this value to be in the range
2−20 ≤ α ≤ 2−40. In addition, one time delta is assumed to at least
provide one bit of entropy, i.e. H = 1. When applying these values to
the formula given in SP800-90B section 4.4.1, the cut-off value of 30 is
calculated.
When the RCT passes, the counter is set to zero for the next time delta
to arrive. In mathematical terms, the verification of back-to-back values
being not identical is the calculation of the first discrete derivative of the
time deltas (or second discrete derivative of time stamps) to show that it

77

is not zero. In addition, the Jitter RNG enhances the RCT by calculating
also the first and third discrete derivative of the time stamp to be injected
into the entropy pool by the LFSR. With that, up to 8 consecutive time
stamp values are assessed. All derivatives must always be non-zero in order
to pass the RCT. If one discrete derivative shows a zero, the RCT counter
is increased. Thus, the addition of the first and third derivative of the time
stamp makes the RCT even more conservative. Hence, the first discrete
derivative is considered to be identical to the “approved” RCT specified
in SP800-90B section 4.4. In addition, linear and exponential patterns are
identified with the first and third discrete derivative, respectively. As the
additional pattern recognition do not invalidate the mandatory pattern
recognition, this RCT approach therefore is considered to be an enhanced
version of the “approved” RCT and thus meets the requirement (a) of
SP800-90B section 4.5.

APT The Jitter RNG implements the Adaptive Proportion Test as defined in
SP800-90B section 4.4.2. As explained in other parts of the document, one
time delta value is assumed to have (at least) one bit of entropy. Thus, the
cut-off value for the APT is 325 compliant to SP800-90B section 4.4.2 for
non-binary data at a significance level of α = 2−30. The APT is calculated
using the four least significant bits of the time delta. During initialization
of the APT, a time delta is set as a base. All subsequent time deltas are
compared to the base time delta. If both values are identical, the APT
counter is increased by one. The window size for the APT is 512 time
deltas. The implementation therefore provides an “approved” APT.

7.3 NIST Clarification Requests
In addition to complying with the requirements of FIPS 140-2 and SP800-90B,
NIST requests the clarification of the following questions.

7.3.1 Sensitivity of Jitter Measurements

The question that needs to be answered is whether the logic that measures the
Jitter is sentitive enough to pick up the Jitter phenomenon exhibited by the
CPU.

Section 2.2 explains that on contemporary CPUs, the time stamps have a
very high resolution. This resolution is so high that variances appear when
simply taking two times after each other and compare the delta. This implies
that the resolution of the time stamp of contemporary CPUs measures the
execution time jitter phenomenon already without any additional instructions
in-between. Thus, the time stamp is sensitive enough to pick up the execution
time jitter.

The Jitter RNG is intended to be usable on different platforms. To en-
sure that the particular platform has a time stamp mechanism that is sensitive
enough for picking up the execution time jitter, the start-up health tests of the
Jitter RNG collection 1,024 time deltas from the noise source operation. If only
one of these time deltas would show a zero value – i.e. the time stamp mecha-
nism of the CPU is to coarse to pick up the execution time Jitter – the start-up
health test will fail and an error is returned to the caller.

78

7.3.2 Dependency Between Jitter Measurements

Another question that is raised by NIST asks for a rationale why there are no
dependencies between individual Jitter measurements.

Sections 6.1 and 6.2 provide a dissection of the noise source. Various anal-
yses are provided demonstrating that the execution time jitter is present in
different circumstances. In addition, by identifying a case where the execution
time jitter can be eliminated for one instruction, hints to the true source of the
execution time jitter are given: The complexity of contemporary CPUs require
the introduction of wait states between the CPU components to implement a
CPU instruction. Depending on the CPU state of the CPU with many dif-
ferent components requiring such synchronization using wait states, the wait
states introduce an uncertainty of the execution time of one particular instruc-
tion. These uncertainties are measured and picked up by the Jitter RNG. This
uncertainty of the number of wait states is a function of the complexity of con-
temporary CPUs and do not show any dependencies of the execution time of
successive instructions.

Dependencies between Jitter measurements imply that some form of patterns
should be detectable.

Section 5.1.1 provides several different analyses on the noise data. One of
the applied analysis is a Fast-Fourier-Transformation of the raw noise data. An
FFT allows to detect patterns and dependencies between individual raw noise
samples. The result of the FFT shows that no patterns can be detected which
supports the conclusion that no dependencies are present.

In addition, a tool is developed to execute the Jitter RNG on bare metal as
documented in section 6.3. This tool boots without an operating system and
does not have device drivers that would interrupt the Jitter RNG operation.
Yet, execution time Jitter is measured with this tool. This implies that the
execution time jitter is not a function of the operating system, but rests solely
in the CPU and its memory access, i.e. another form of dependencies between
Jitter measurements can be disregarded.

7.4 Reuse of SP800-90B Analysis
The SP800-90B compliance of the Jitter RNG was reviewed by NIST where all
received comments were addressed. Though, an official approval is only given
when the Jitter RNG is used as part of a real FIPS 140-2 validation. In order to
apply the Jitter RNG to a particular environment and to claim that this Jitter
RNG usage satisfies all SP800-90B requirements, the following steps must be
performed:

1. Obtain raw noise data when executing the Jitter RNG on the intended
target platform as explained in section 7.2.3. The obtained raw noise data
must be processed by the SP800-90B tool to obtain an entropy rate which
must be above 1 bit of entropy per time delta.

2. Obtain the restart noise data when executing the Jitter RNG on the in-
tended target platform as explained in section 7.2.4. The obtained raw
noise data must be processed by the SP800-90B tool to verify:

(a) the sanity test to apply to the noise restart data must pass, and

79

(b) the minimum of the row-wise and column-wise entropy rate must not
be less than half of the entropy rate from measurement (1) and the
entropy assessment of the noise source based on the restart data must
be at least 1 bit of entropy per time delta.

If these steps are successfully mastered the user would now satisfy all SP800-90B
criteria and thus does not need to prepare his own SP800-90B analysis since the
document we discuss here covers all other aspects of the SP800-90B analysis.

8 Conclusion
For the conclusion, we need to get back to chapter 1 and consider the initial
goals we have set out.

First, let us have a look at the general statistical and entropy requirements.
Chapter 4 concludes that the statistical properties of the random number bit
stream generated by the CPU Jitter random number generator meets all ex-
pectations. Chapter 5 explains the entropy behavior and concludes that the
collected entropy by the CPU execution time jitter is much larger than the en-
tropy pool. In addition, that section determines that the way data is mixed
into the entropy pool does not diminish the gathered entropy. Therefore, this
chapter concludes that one bit of output of the CPU Jitter random number
generator holds one bit of information theoretical entropy.

It is noteworthy that the distribution of the sole time deltas without any
processing in kernel space was measured to be spaced in increments of three in
figure 2.2. This property, however, did not show any impact on the distribution
of time deltas resulting from the processing of the CPU Jitter random number
generator, particularly the root entropy discussed in section 5.1.

In addition to these general goals, chapter 1 lists a number of special goals.
These goals are covered in the following list where the list number equals to the
list number in chapter 1.

1. On demand operation is ensured by the fact that the entropy collection
loop is triggered when the caller requests data. Multiple loops are initiated
sequentially if the requested bit string is larger than 64 bits.

2. When compiled as a user space application, the CPU Jitter random num-
ber generator returns roughly 10 kBytes per second on an Intel Core i7
2nd generation with 2.7 GHz. In kernel space, the speed is roughly the
same on the same test system. An Intel Atom Z530 system with 1.6 GHz
produces output at about 2kBytes per second.

3. The design description explains that the CPU Jitter random number gen-
erator always returns entropy. The entropy is generated when the request
for it is received.

4. In virtualized environments, the fundamental property of CPU execution
time jitter is still present. Moreover, reading high-resolution timing infor-
mation from the CPU is typically allowed by the virtualization environ-
ment and is not subject to virtualization itself13. Thus, a virtual environ-
ment can execute the CPU Jitter random number generator and deliver

13Although the discussion of virtualizing the CPU time stamp – e.g. the RDTSC x86 processor

80

equal entropy. Due to the additional processing that typically is present
to support reading the CPU time stamp, the CPU execution time jitter
is expected to be higher and thus supportive to the CPU Jitter random
number generator.

5. The design description explains that the CPU Jitter random number gen-
erator always generates fresh entropy.

6. The reference implementation work in both kernel and user space.

7. The heart of the CPU execution time jitter collection is about 50 lines
of C code using XOR, bit shifting, and a loop operation – functions
jent_gen_entropy, jent_unbiased_bit, jent_memaccess, jent_lfsr_time
and jent_loop_shuffle implement the core. That is a fairly small and
easy to understand implementation. The rest of the code just reads the
data out to the caller and ensures the entropy collection loop is invoked
as often as the caller requests its operation.

8. The CPU Jitter random number generator requires access to the CPU
high resolution timer. In Linux, that is granted to unprivileged processes.
Therefore, every process that is in need of entropy can instantiate its own
copy of the CPU Jitter random number generator.

9. The CPU Jitter random number generator generates a fresh 64 bit ran-
dom number for each request. Even though it reuses the contents of the
entropy pool that was used for previous random numbers, it makes no as-
sumption whether entropy is present or not. Moreover, the data fed into
the entropy pool is not deterministic. Thus, perfect forward and backward
secrecy is considered to be maintained. The question is: How do we inter-
pret the case when an observer gets access to the entropy pool when the
first few iterations of one entropy collection loop operation are performed.
Let us assume that an observer accesses the entropy pool after the first
iteration of the loop completes. That iteration added some but very little
entropy. The observer can “brute-force” the previous random number14

by guessing the few added numbers. Therefore, how do we interpret for-
ward and backward secrecy here? The definition we apply is the following:
Perfect forward and backward secrecy is ensured when an observer gains
access to one random number generated by the CPU Jitter random num-
ber generator. When an observer gains access to the entropy pool while
a random number is generated, the perfect forward and backward secrecy
applies to all random numbers before the last generated random number
and after the currently generated random number, excluding the last and
currently generated random number. To make sure that the last gener-
ated random number is not lingering in memory for too long, the code
invokes the entropy collection loop one more time after completing the
calling application’s request which changes the entropy pool such that in
an event an observer can get access to the entropy pool, he gains nothing

instruction – is conducted once in a while, no attempts to implement such virtualization has
been made. The goal of such virtualization would only be to hide the existence of a hypervisor
to a guest. But current virtualization environments do not pursue that goal.

14The same applies for the new random number when the observer would access the entropy
pool in the last few iterations before completion of entropy collection loop.

81

– this code is executed if the environment where the CPU Jitter random
number generator is embedded into does not implement a secure memory
handling.

8.1 Threat Scenario
After explaining the functionality of the CPU Jitter random number generator,
the statistical properties and the assessment of the entropy, let us try to attack
the mechanism. When attacking, we have to first determine our goals. The
following list enumerates the goals:

• Direct readout of random number or the internal state of the CPU Jitter
random number generator: This approach can be immediately refuted as
the random number generator relies on the process separation and memory
isolation offered by contemporary operating systems.

• Interleaving with the time stamp collection of the victim process.

8.1.1 Interleaving of Time Stamp Collection

The interleaving attack is illustrated with figure 8.1.

Time StampTime Stamp

T
im

e
lin

e

Jitter
Collector
Process

Victim
Process

Attacker
Process

Victim
Process

Time StampTime Stamp

Time StampTime Stamp

Time StampTime Stamp

Time StampTime Stamp

Time StampTime Stamp

Time StampTime Stamp

Time StampTime Stamp

Time StampTime Stamp

Time StampTime Stamp

Time StampTime Stamp

Time StampTime Stamp

Jitter

Jitter

Jitter

Jitter

Jitter

Entropy
Source

Figure 8.1: Attack process interleaving with victim process

The left process marked as “Jitter Collector Process” would be a process im-
plementing the CPU Jitter random number generator and would run unobserved
– i.e. the case when no attack is staged.

Now we can conceive a scenario where the victim process executing the
entropy collection loop to gather entropy. An attacker process tries somehow to
gain knowledge about the time stamps obtained by the victim process during
the entropy collection loop. The attacker process may try to read also the time
stamps of the system.

The worst case would be, if the attacker would be able to stage his time
stamp readings such that he interleaves one-to-one with the victim process time
stamp collection on the same CPU core. When executing the attacker on another

82

CPU core, the interleaving mechanism would not work. That means that the
very next time stamp gathering operation that is technically possible after the
victim gathered one time stamp is read by the attacker. Then, the next time
stamp is again read by the victim, and so forth. Figure 8.1 illustrates the time
stamp collection of the victim and attacker in the middle part.

Now, the attacker tries to deduct the victim’s time stamps from his time
stamp readings. To a large degree, he is able to determine them. But the minis-
cule variations between adjacent time stamp readings is the source of entropy for
the CPU Jitter random number generator – marked as the time span between
the time stamp read operations in figure 8.1.

Comparing the attack process readings with a fully unobserved process indi-
cates that the attacking process can never determine the victim’s time stamps
more accurate than the CPU execution time jitter our random number genera-
tor is based on. An attacking process is never be able to reduce the variations
of the CPU execution time jitter.

A Availability of Source Code
The source code of the CPU Jitter entropy random number generator including
the documentation is available at http://www.chronox.de/jent/jitterentropy-current.
tar.bz2.

The source code for the test cases and R-project files to generate the graphs
is available at the same web site.

B Linux Kernel Implementation
The document describes in chapter 1 the goals of the CPU Jitter random number
generator. One of the goals is to provide individual instances to each consumer
of entropy. One of the consumers are users inside the Linux kernel.

As described above, the output of the CPU Jitter random number generator
is not intended to be used directly. Instead, the output shall be used as a seed for
either a whitening function or a deterministic random number generator. The
Linux kernel support provided with the CPU Jitter random number generator
chooses the latter approach by using the ANSI X9.31 DRNG that is provided
by the Linux kernel crypto API.

Figure B.1 illustrates the connection between the entropy collection and the
deterministic random number generators offered by the Linux kernel support.
The interfaces at the lower part of the illustration indicate the Linux kernel
crypto API names of the respective deterministic random number generators
and the file names within /sys/kernel/debug, respectively.

Every deterministic random number generator instance is seeded with its
own instance of the CPU Jitter random number generator. This implementa-
tion thus uses one of the design goals outlined in chapter 1, namely multiple,
unrelated instantiations of the CPU Jitter random number generator.

83

http://www.chronox.de/jent/jitterentropy-current.tar.bz2
http://www.chronox.de/jent/jitterentropy-current.tar.bz2

CPU Jitter
RNG

Instance 1

CPU Jitter
RNG

Instance 1

Strong DRNG

ANSI X9.31

Strong DRNG

ANSI X9.31

Regular DRNG

ANSI X9.31

Regular DRNG

ANSI X9.31

Timer DT
V Seed
K Seed Key

reg(jent_drng)
Jitterentropy/drng

strong(jent_drng)
Jitterentropy/strong-drng

CPU Jitter
RNG

Instance 2

CPU Jitter
RNG

Instance 2

Timer DT
V Seed
K Seed Key

raw(jent_drng)
Jitterentropy/seed

CPU Jitter
RNG

Instance 3

CPU Jitter
RNG

Instance 3

Figure B.1: Using CPU Jitter RNG to seed ANSI X9.31 DRNGs

The offered deterministic random number generators have the following char-
acteristics:

• The regular deterministic random number generator is re-seeded with
entropy from the CPU Jitter random number generator after obtaining
MAX_BYTES_RESEED bytes since the last re-seed. Currently that value is set
to 1 kilobytes. In addition, when reaching the limit of MAX_BYTES_REKEY
bytes since the last re-key, the deterministic random number generator is
re-keyed using entropy from the CPU Jitter random number generator.
This value is currently set to 1 megabytes.

• The strong deterministic random number generator is re-seeded and re-
keyed after the generator of MAX_BYTES_STRONG_RESEED bytes and MAX_BYTES_STRONG_REKEY
bytes, respectively. The re-seeding value is set to 16 bytes, which is equal
to the block size of the deterministic random number generator. This
implies that the information theoretical entropy of one block of random
number generated from the deterministic random number generator is al-
ways 16 bytes. The re-key value is set to 1 kilobytes.

• Direct access to the CPU Jitter random number generator is provided to
the caller when raw entropy is requested.

Currently, the kernel crypto API only implements a full reset of the determin-
istic random number generators. Therefore, the description given above is the
plan after the kernel crypto API has been extended. Currently, when hitting the
re-seed threshold, the deterministic random number generator is reset with 48
bytes of entropy from the CPU Jitter random number generator. The re-key
value is currently not enforced.

B.1 Kernel Crypto API Interface
When compiling the source code with the configuration option CRYPTO_CPU_JITTERENTROPY_KCAPI,
the kernel crypto API bonding code is compiled. That code registers the men-
tioned deterministic random number generators with the kernel crypto API.
The bonding code provides a very thin wrapper around the management code
for the provided random number generators.

84

The deterministic random number generators connected with as well as the
direct access to the CPU Jitter random number generator are accessible using
the following kernel crypto API names:

reg(jent_rng) Regular deterministic random number generator

strong(jent_rng) Strong deterministic random number generator

raw(jent_rng) Direct access to the CPU Jitter random number generator
which returns unmodified data from the entropy collection loop.

When invoking a reset operation on one of the deterministic random num-
ber generator, the implementation performs the re-seed and re-key operations
mentioned above on this deterministic random number generator irrespectively
whether the thresholds are hit.

A reset on the raw(jent_rng) instance is a noop.

B.2 Kernel DebugFS Interface
The kernel DebugFS interface offered with the code is only intended for debug-
ging and testing purposes. During regular operation, that code shall not be
compiled as it allows access to the internals of the random number generation
process.

The DebugFS interface is compiled when enabling the CRYPTO_CPU_JITTERENTROPY_DBG
configuration option. The interface registers the following files within the direc-
tory of /sys/kernel/debug/jitterentropy:

stat The stat file offers statistical data about the regular and strong random
number generators, in particular the total number of generated bytes and
the number of re-seeds and re-keys.

stat-timer This file contains the statistical timer data for one entropy collec-
tion loop count: time delta, delta of time deltas and the entropy collection
loop counter value. This data forms the basis of the discussion in chap-
ter 4. Reading the file will return an error if the code is not compiled with
CONFIG_CRYPTO_CPU_JITTERENTROPY_STAT.

stat-bits This file contains the three tests of the bit distribution for the graphs
in chapter 4. Reading the file will return an error if the code is not
compiled with CONFIG_CRYPTO_CPU_JITTERENTROPY_STAT.

stat-fold This file provides the information for the entropy tests of the LFSR
loop as outlined in section 5.1. Reading the file will return an error if the
code is not compiled with CONFIG_CRYPTO_CPU_JITTERENTROPY_STAT.

drng The drng file offers access to the regular deterministic random number
generator to pull random number bit streams of arbitrary length. Multiple
applications calling at the same time are supported due to locking.

strong-rng The strong-drng file offers access to the strong deterministic ran-
dom number generator to pull random number bit streams of arbitrary
length. Multiple applications calling at the same time are supported due
to locking.

85

seed The seed file allows direct access to the CPU Jitter random number gen-
erator to pull random number bit streams of arbitrary lengths. Multiple
applications calling at the same time are supported due to locking.

timer The timer file provides access to the time stamp kernel code discussed
in section 2. Be careful when obtaining data for analysis out of this file:
redirecting the output immediately into a file (even a file on a TmpFS)
significantly enlarges the measurement and thus make it look having more
entropy than it has.

collection_loop_count This file allows access to the entropy collection loop
counter. As this counter value is considered to be a sensitive parame-
ter, this file will return -1 unless the entire code is compiled with the
CRYPTO_CPU_JITTERENTROPY_STAT flag. This flag is considered to be dan-
gerous for normal operations as it allows access to sensitive data of the
entropy pool that shall not be accessible in regular operation – if an ob-
server can access that data, the CPU Jitter random number generator
must be considered to deliver much diminished entropy. Nonetheless, this
flag is needed to obtain the data that forms the basis of some graphs given
above.

B.3 Integration with random.c
The CPU Jitter random number generator can also be integrated with the Linux
/dev/random and /dev/urandom code base to serve as a new entropy source.
The provided patch instantiates an independent copy of an entropy collector for
each entropy pool. Entropy from the CPU Jitter random number generator is
only obtained if the entropy estimator indicates that there is no entropy left in
the entropy pool.

This implies that the currently available entropy sources have precedence.
But in an environment with limited entropy from the default entropy sources,
the CPU Jitter random number generator provides entropy that may prevent
/dev/random from blocking.

The CPU Jitter random number generator is only activated, if jent_entropy_init
passes.

B.4 Test Cases
The directory tests_kernel/kcapi-testmod/ contains a kernel module that
tests whether the Linux Kernel crypto API integration works. It logs its infor-
mation at the kernel log.

The testing of the interfaces exported by DebugFS can be performed man-
ually on the command line by using the tool dd with the files seed, drng,
strong-drng, and timer as dd allows you to set the block size precisely (unlike
cat). The other files can be read using cat.

C Libgcrypt Implementation
Support to plug the CPU Jitter random number generator into libgcrypt is pro-
vided. The approach is to add the callback to the CPU Jitter random number

86

generator into _gcry_rndlinux_gather_random. Thus, the CPU Jitter ran-
dom number generator has the ability to run every time entropy is requested.
Figure C.1 illustrates how the CPU Jitter random number generator hooks into
the libgcrypt seeding framework.

libgcrypt DRNGlibgcrypt DRNG

/dev/random
/dev/urandom
/dev/random
/dev/urandom

CPU Jitter
RNG

Instance covering
WEAK

CPU Jitter
RNG

Instance covering
WEAK

_gcry_rndhw_poll_slow_gcry_rndhw_poll_slow

_gcry_jent_gather_random_gcry_jent_gather_random

CPU Jitter
RNG

Instance covering
STRONG

CPU Jitter
RNG

Instance covering
STRONG

CPU Jitter
RNG

Instance covering
VERY_STRONG

CPU Jitter
RNG

Instance covering
VERY_STRONG

GCRYCTL_SET_CPU_JITTER_ENTROPY 1

GCRYCTL_SET_CPU_
JITTER_ENTROPY 0

Figure C.1: Use of CPU Jitter RNG by libgcrypt

The wrapper code around the CPU Jitter random number generator pro-
vided for libgcrypt holds the following instances of the random number gen-
erator. Note, the operation of the CPU Jitter random number generator is
unchanged for each type. The goal of that approach shall ensure that each type
of seed request is handled by a separate and independent instance of the CPU
Jitter random number generator.

weak_entropy_collector Used when GCRY_WEAK_RANDOM random data is re-
quested.

strong_entropy_collector Used when GCRY_STRONG_RANDOM random data
is requested.

very_strong_entropy_collector Used when GCRY_VERY_STRONG_RANDOM ran-
dom data is requested.

The CPU Jitter random number generator with its above mentioned instances
is initialized when the caller uses GCRYCTL_SET_CPU_JITTER_ENTROPY with the
flag 1. At this point, memory is allocated.

Only if the above mentioned instances are allocated, the wrapper code uses
them! That means the callback from _gcry_rndlinux_gather_random to the
CPU Jitter random number generator only returns random bytes when these
instances are allocated. In turn, if they are not allocated, the normal processing
of _gcry_rndlinux_gather_random is continued.

If the user wants to disable the use of the CPU Jitter random number gen-
erator, a call to GCRYCTL_SET_CPU_JITTER_ENTROPY with the flag 0 must be
made. That call deallocates the random number generator instances.

The code is tested with the test application tests_userspace/libgcrypt/jent_test.c.
When using strace on this application, one can see that after disabling the CPU
Jitter random number generator, /dev/random is opened and data is read. That
implies that the standard code for seeding is invoked.

See patches/README for details on how to apply the code to libgcrypt.

87

D OpenSSL Implementation
Code to link the CPU Jitter random number generator with OpenSSL is pro-
vided.

An implementation of the CPU Jitter random number generator encapsu-
lated into different OpenSSL Engines is provided. The relationship of the dif-
ferent engines to the OpenSSL default random number generator is depicted in
figure D.1.

CPU Jitter
RNG

Instance 1

CPU Jitter
RNG

Instance 1

Strong
Default OpenSSL

DRNG

Strong
Default OpenSSL

DRNG

Regular
Default OpenSSL

DRNG

Regular
Default OpenSSL

DRNG

Seed

jitterentropy-drng jitterentropy-strong

CPU Jitter
RNG

Instance 2

CPU Jitter
RNG

Instance 2

Seed

jitterentropy-raw

CPU Jitter
RNG

Instance 3

CPU Jitter
RNG

Instance 3

Figure D.1: CPU Jitter random number generator seeding OpenSSL default
DRNG

The following OpenSSL Engines are implemented:

jitterentropy-raw The jitterentropy-raw engine provides direct access to
the CPU Jitter random number generator.

jitterentropy-drng The jitterentropy-drng engine generates random num-
bers out of the OpenSSL default deterministic random number generator.
This DRNG is seeded with 16 bytes out of CPU Jitter random num-
ber generator every 210 bytes. After 220 bytes, the DRNG is seeded and
re-keyed, if applicable, with 48 bytes after a full reset of the DRNG.
When the Note, the intention of this engine implementation is that it
is registered as the default OpenSSL random number generator using
ENGINE_set_default_RAND(3).

jitterentropy-strong The jitterentropy-strong engine is very similar to
jitterentropy-drng except that the reseeding values are 16 bytes and 210

bytes, respectively. The goal of the reseeding is that always information
theoretical entropy is present in the DRNG15.

The different makefiles compile the different engine shared library. The test case
tests_userspace/openssl/jitterentropy-eng-test.c shows the proper work-
ing of the respective CPU Jitter random number generator OpenSSL Engines.

In addition, a patch independent from the OpenSSL Engine support is pro-
vided that modifies the RAND_poll API call to seed the OpenSSL deterministic

15For the FIPS 140-2 ANSI X9.31 DRNG, this equals to one AES block. For the default
SHA-1 based DRNG with a block size of 160 bits, the reseeding occurs a bit more frequent
than necessary, though.

88

random number generator. The RAND_poll first tries to obtain entropy from the
CPU Jitter random number generator. If that fails, e.g. the initialization call
fails due to missing high-resolution timer support, the standard call procedure
to open /dev/urandom or /dev/random or the EGD is performed.

Figure D.2 illustrates the operation.

OpenSSL RNGOpenSSL RNG

/dev/urandom
/dev/random
/dev/urandom
/dev/random

CPU Jitter
RNG

CPU Jitter
RNG

RAND_pollRAND_poll

Figure D.2: Linking OpenSSL with CPU Jitter RNG

The code is tested with the test application tests_userspace/openssl/jent_test.c.
When using strace on this application, one can see that after patching OpenSSL,
/dev/urandom is not opened and thus not used. That implies that the CPU
Jitter random number generator code for seeding is invoked.

See patches/README for details on how to apply the code to OpenSSL.

E Shared Library And Stand-Alone Daemon
The CPU Jitter random number generator can be compiled as a stand-alone
shared library using the Makefile.shared makefile. The shared library exports
the interfaces outlined in jitterentropy(3). After compilation, link with the
shared library using the linker option -ljitterentropy.

To update the entropy in the input_pool behind the Linux /dev/random
and /dev/urandom devices, the daemon jitterentropy-rngd is implemented.
It polls on /dev/random. The kernel wakes up polling processes when the en-
tropy counter falls below a threshold. In this case, the jitterentropy-rngd
gathers 256 bytes of entropy and injects it into the input_pool. In addition,
/proc/sys/kernel/random/entropy_avail is read in 5 second steps. If the
value falls below 1024, jitterentropy-rngd gathers 256 bytes of entropy and
injects it into the input_pool. The reason for polling entropy_avail is the
fact that when random numbers are extracted from /dev/urandom, the poll on
/dev/random is not triggered when the entropy estimator falls.

F LFSR Loop Entropy Measurements
The following sections show the measurements explained in section 5.1 for dif-
ferent CPUs. These measurements all support the conclusion in section 5.1.

Note, all measurements in this sections only cover the CPU execution time
jitter by disabling memory accesses. By showing that CPU execution time jitter
is already sufficient, the additional measurement of of memory accesses will not
change the sufficiency of the timing variations.

89

Note, all these tests were executed in user space. Although the compilation
of the CPU Jitter random number generator will always be performed without
optimizations, tests are executed with and without optimizations. Testing with
optimizations considers again the worst case. If testing with optimizations shows
too little entropy, the test is repeated without optimizations.

A large number of tests on different CPUs with different operating systems
were executed. The following table summarizes the tests by enumerating the
upper and lower boundary of the Shannon Entropy for all test systems. The
table lists:

• the CPU,

• the word size (WS) of the software,

• whether the code compiled optimized with -O2 or not,

• the upper Shannon Entropy boundary,

• the lower Shannon Entropy boundary,

• the operating system, and

• whether the jent_entropy_init function would accept the CPU.

The table demonstrates that the CPU Jitter random number generator delivers
high-quality entropy on:

• a large range of CPUs ranging from embedded systems of MIPS and ARM
CPUs, covering desktop systems with AMD, Intel and VIA x86 32 bit and
64 bit CPUs as well as Apple PowerPC, up to server CPUs of Intel Itanium,
Sparc, POWER and IBM System Z;

• a large range of operating systems: Linux (different distributions and ker-
nel versions), OpenBSD, FreeBSD, NetBSD, AIX, OpenIndiana (Open-
Solaris), z/OS, Apple MacOS, Android, Windows, and microkernel based
operating systems (Genode with microkernels of NOVA, Fiasco.OC, Pis-
tachio);

• a range of different compilers: GCC, Clang, Microsoft Visual Studio, and
the z/OS C compiler.

CPU WS Opt Upper Lower OS Acc
Intel(R) Xeon(R) CPU

X5660 @ 2.80GHz 64 y 6.01 2.78 Linux y

Intel(R) Xeon(R) CPU
E5620 @ 2.40GHz 64 y 5.99 2.67 Linux y

Intel(R) Xeon(R) CPU
E5-2470 0 @ 2.30GHz 64 y 7.09 2.58 Linux y

AMD Generic S 64 y 3.75 1.98 Linux y
Intel(R) Xeon(R) CPU
E5-4650 0 @ 2.70GHz 64 y 6.91 2.42 Linux y

Intel(R) Atom(TM) CPU
S1240 @ 1.60GHz 64 y 6.59 2.10 Linux y

90

http://genode-labs.com

CPU WS Opt Upper Lower OS Acc
Intel(R) Core(TM)2 Quad

CPU @ 2.66GHz 64 y 6.00 2.80 Linux y

Intel(R) Xeon(R) CPU
X3470 @ 2.93GHz 64 y 5.36 1.74 Linux y

Intel(R) Xeon(R) CPU
X5650 @ 2.67GHz 64 y 6.78 3.33 Linux y

Intel(R) Xeon(R) CPU
X5472 @ 3.00GHz 64 y 5.91 2.90 Linux y

Intel(R) Xeon(R) CPU 5150
@ 2.66GHz 64 y 7.93 4.41 Linux y

Dual-Core AMD
Opteron(tm) Processor 2218 64 y 5.19 1.95 Linux y

Quad-Core AMD
Opteron(tm) Processor 2356 64 y 6.62 2.65 Linux y

Intel(R) Pentium(R) CPU
1403 @ 2.60GHz 64 y 7.21 1.89 Linux y

Genuine Intel(R) CPU @
2.83GHz 64 y 6.86 2.66 Linux y

Intel(R) Xeon(R) CPU
X5550 @ 2.67GHz 64 y 6.79 3.13 Linux y

Intel(R) Xeon(R) CPU
X5660 @ 2.80GHz 64 y 9.25 5.46 Linux y

Intel(R) Xeon(R) CPU
E7520 @ 1.87GHz 64 y 6.87 2.57 Linux y

Genuine Intel(R) CPU @
2.93GHz 64 y 5.94 3.09 Linux y

Dual Core AMD
Opteron(tm) Processor 890 64 y 5.04 1.58 Linux y

Dual-Core AMD
Opteron(tm) Processor 8218 64 y 5.54 1.94 Linux y

Intel(R) Xeon(R) CPU
E5540 @ 2.53GHz 64 y 6.97 3.42 Linux y

Dual Core AMD
Opteron(tm) Processor 870 64 y 5.50 2.05 Linux y

Intel(R) Xeon(R) CPU
L5520 @ 2.27GHz 64 y 7.51 3.49 Linux y

QEMU Virtual CPU version
0.15.1 64 y 10.26 6.97 Linux y

Dual Core AMD
Opteron(tm) Processor 280 64 y 5.11 2.25 Linux y

Genuine Intel(R) CPU 000 @
2.40GHz 64 y 6.40 3.08 Linux y

Intel(R) Core(TM) i5-4570
CPU @ 3.20GHz 64 y 6.66 2.09 Linux y

Intel(R) Xeon(R) CPU
E5504 @ 2.00GHz 64 y 5.12 1.36 Linux y

91

CPU WS Opt Upper Lower OS Acc
Intel(R) Xeon(R) CPU
E5-4650 0 @ 2.70GHz 64 y 7.09 2.88 Linux y

Intel(R) Xeon(R) CPU
X5670 @ 2.93GHz 64 y 6.80 3.06 Linux y

AMD Opteron(tm)
Processor 6172 64 y 5.68 2.30 Linux y

Dual Core AMD
Opteron(tm) Processor 890 64 y 5.25 2.42 Linux y

Intel(R) Xeon(R) CPU
X5376 @ 2.80GHz 64 y 6.14 3.16 Linux y

Intel(R) Xeon(R) CPU
E5-2697 v2 @ 2.70GHz 64 y 6.01 2.25 Linux y

Intel(R) Xeon(R) CPU
E5-4650 0 @ 2.70GHz 64 y 7.37 2.89 Linux y

Intel(R) Xeon(R) CPU
X5376 @ 2.80GHz 64 y 6.62 3.59 Linux y

Intel(R) Core(TM) i7 CPU
X 980 @ 3.33GHz 64 y 6.55 2.31 Linux y

Intel(R) Xeon(R) CPU
L5520 @ 2.27GHz 64 y 6.59 2.74 Linux y

Intel(R) Xeon(R) CPU
X5680 @ 3.33GHz 64 y 6.29 2.60 Linux y

Intel(R) Xeon(TM) CPU
3.40GHz 64 y 6.15 2.20 Linux y

Intel(R) Xeon(R) CPU
E5-2695 v2 @ 2.40GHz 64 y 7.30 2.73 Linux y

AMD Opteron(tm)
Processor 6386 SE 64 y 6.35 2.23 Linux y

Genuine Intel(R) CPU 000 @
2.27GHz 64 y 5.92 3.20 Linux y

AMD Opteron(tm)
Processor 6172 64 y 6.60 2.89 Linux y

Intel(R) Xeon(R) CPU
X5472 @ 3.00GHz 64 y 6.09 2.90 Linux y

AMD Generic S 64 y 7.05 2.87 Linux y
Intel(R) Xeon(R) CPU
E5-4650 0 @ 2.70GHz 64 y 6.88 2.52 Linux y

Genuine Intel(R) CPU @
2.40GHz 64 y 4.98 1.54 Linux y

AMD Generic S 64 y 7.50 2.48 Linux y
Intel(R) Xeon(R) CPU
E5-2697 v2 @ 2.70GHz 64 y 6.92 3.02 Linux y

Genuine Intel(R) CPU @
2.66GHz 64 y 5.38 2.96 Linux y

Intel(R) Xeon(TM) CPU
3.73GHz 64 y 5.24 1.96 Linux y

92

CPU WS Opt Upper Lower OS Acc
Genuine Intel(R) CPU @

2.80GHz 64 y 7.31 2.65 Linux y

Intel(R) Xeon(R) CPU
X7560 @ 2.27GHz 64 y 6.78 3.24 Linux y

AMD Generic S 64 y 3.65 0.60 Linux y
AMD Generic S 64 n 3.74 1.62 Linux y

Intel(R) Xeon(R) CPU
W3530 @ 2.80GHz 64 y 6.40 2.28 Linux y

Intel(R) Xeon(R) CPU
X5660 @ 2.80GHz 32 y 9.35 4.16 Linux y

Intel(R) Xeon(R) CPU
E5620 @ 2.40GHz 32 y 9.19 3.91 Linux y

Intel(R) Xeon(R) CPU
E5-2470 0 @ 2.30GHz 32 y 9.70 4.41 Linux y

Intel(R) Xeon(R) CPU
E5-4650 0 @ 2.70GHz 32 y 9.62 4.05 Linux y

Intel(R) Atom(TM) CPU
S1240 @ 1.60GHz 32 y 8.27 3.93 Linux y

Intel(R) Core(TM)2 Quad
CPU @ 2.66GHz 32 y 7.11 3.18 Linux y

Intel(R) Xeon(R) CPU
X3470 @ 2.93GHz 32 y 8.64 3.81 Linux y

Intel(R) Xeon(R) CPU
X5650 @ 2.67GHz 32 y 9.14 4.68 Linux y

Intel(R) Xeon(R) CPU
X5472 @ 3.00GHz 32 y 8.13 3.46 Linux y

Genuine Intel(R) CPU @
2.83GHz 32 y 8.97 3.34 Linux y

Intel(R) Xeon(R) CPU
X5550 @ 2.67GHz 32 y 9.54 4.10 Linux y

Intel(R) Xeon(R) CPU
X5660 @ 2.80GHz 32 y 11.65 7.66 Linux y

Intel(R) Xeon(R) CPU
E7520 @ 1.87GHz 32 y 8.34 3.28 Linux y

Genuine Intel(R) CPU @
2.93GHz 32 y 7.93 3.29 Linux y

Intel(R) Xeon(R) CPU
E5345 @ 2.33GHz 32 y 7.33 3.14 Linux y

Intel(R) Xeon(R) CPU
E5540 @ 2.53GHz 32 y 9.19 4.14 Linux y

QEMU Virtual CPU version
0.15.1 32 y 11.32 7.40 Linux y

Genuine Intel(R) CPU 000 @
2.40GHz 32 y 10.21 5.19 Linux y

Intel(R) Xeon(R) CPU
E5504 @ 2.00GHz 32 y 8.85 3.34 Linux y

93

CPU WS Opt Upper Lower OS Acc
Intel(R) Core(TM) i5-4570

CPU @ 3.20GHz 32 y 8.34 2.64 Linux y

Intel(R) Xeon(R) CPU
E5504 @ 2.00GHz 32 y 8.23 3.42 Linux y

Intel(R) Xeon(R) CPU
X5670 @ 2.93GHz 32 y 9.78 5.03 Linux y

Intel(R) Xeon(R) CPU
X5472 @ 3.00GHz 32 y 8.55 4.30 Linux y

Intel(R) Xeon(R) CPU
X5376 @ 2.80GHz 32 y 7.73 3.42 Linux y

Intel(R) Xeon(R) CPU
E5-2697 v2 @ 2.70GHz 32 y 9.14 3.76 Linux y

Intel(R) Xeon(R) CPU
E5-4650 0 @ 2.70GHz 32 y 9.92 4.51 Linux y

Intel(R) Xeon(R) CPU
X5376 @ 2.80GHz 32 y 8.04 3.54 Linux y

Intel(R) Core(TM) i7 CPU
X 980 @ 3.33GHz 32 y 10.18 5.53 Linux y

Intel(R) Xeon(R) CPU
E5-2650 0 @ 2.00GHz 32 y 9.76 3.84 Linux y

Intel(R) Xeon(R) CPU
L5520 @ 2.27GHz 32 y 9.51 4.18 Linux y

Intel(R) Xeon(TM) CPU
3.40GHz 32 y 9.05 3.99 Linux y

Intel(R) Xeon(R) CPU
E5-2695 v2 @ 2.40GHz 32 y 10.09 4.97 Linux y

Genuine Intel(R) CPU 000 @
2.27GHz 32 y 9.21 4.69 Linux y

Intel(R) Xeon(R) CPU
X5472 @ 3.00GHz 32 y 9.22 4.35 Linux y

Intel(R) Xeon(R) CPU
E5-4650 0 @ 2.70GHz 32 y 9.54 4.07 Linux y

Genuine Intel(R) CPU @
2.40GHz 32 y 5.96 1.82 Linux y

Intel(R) Xeon(R) CPU
E5-2697 v2 @ 2.70GHz 32 y 9.61 3.84 Linux y

Genuine Intel(R) CPU @
2.66GHz 32 y 5.92 1.64 Linux y

Intel(R) Xeon(TM) CPU
3.73GHz 32 y 5.10 1.48 Linux y

Genuine Intel(R) CPU @
2.80GHz 32 y 9.62 4.14 Linux y

Intel(R) Xeon(TM) CPU
3.20GHz 32 y 7.80 2.74 Linux y

Intel(R) Xeon(R) CPU
X7560 @ 2.27GHz 32 y 9.24 3.98 Linux y

94

CPU WS Opt Upper Lower OS Acc
Intel(R) Xeon(R) CPU
W3530 @ 2.80GHz 32 y 9.97 4.82 Linux y

POWER7 (architected),
altivec supported - CHRP

IBM,8202-E4B
64 y 11.21 7.49 Linux y

POWER7 (architected),
altivec supported - CHRP

IBM,8202-E4B
64 y 10.76 6.23 Linux y

POWER7 (architected),
altivec supported - CHRP

IBM,8231-E2B
64 y 8.26 3.87 Linux y

POWER5+ (gs) - CHRP
IBM,9113-550 64 y 7.81 3.10 Linux y

POWER5+ (gs) - CHRP
IBM,9113-550 64 y 7.80 3.10 Linux y

POWER5+ (gs) - CHRP
IBM,9117-570 64 y 6.63 2.54 Linux y

POWER7 (architected),
altivec supported - CHRP

IBM,8231-E2B
64 y 8.31 4.05 Linux y

POWER7 (architected),
altivec supported - CHRP

IBM,8231-E2D
64 y 8.95 5.79 Linux y

POWER7 (architected),
altivec supported - CHRP

IBM,8231-E2D
64 y 10.66 6.38 Linux y

POWER7 (architected),
altivec supported - CHRP

IBM,8231-E2D
64 y 8.24 4.94 Linux y

POWER5+ (gs) - CHRP
IBM,9131-52A 64 y 10.99 6.68 Linux y

POWER5 (gr) - CHRP
IBM,9123-705 64 y 5.97 1.60 Linux y

POWER7 (architected),
altivec supported - CHRP

IBM,8202-E4B
32 y 11.59 7.51 Linux y

POWER7 (architected),
altivec supported - CHRP

IBM,8202-E4B
32 y 10.82 5.66 Linux y

POWER7 (architected),
altivec supported - CHRP

IBM,8231-E2B
32 y 9.32 4.12 Linux y

POWER5+ (gs) - CHRP
IBM,9113-550 32 y 9.02 4.13 Linux y

POWER5+ (gs) - CHRP
IBM,9113-550 32 y 9.54 5.06 Linux y

95

CPU WS Opt Upper Lower OS Acc
POWER5+ (gs) - CHRP

IBM,9117-570 32 y 10.84 6.10 Linux y

POWER7 (architected),
altivec supported - CHRP

IBM,8231-E2B
32 y 9.73 4.71 Linux y

POWER7 (architected),
altivec supported - CHRP

IBM,8231-E2D
32 y 11.30 6.75 Linux y

POWER7 (architected),
altivec supported - CHRP

IBM,8231-E2D
32 y 9.51 4.77 Linux y

POWER7 (architected),
altivec supported - CHRP

IBM,8231-E2D
32 y 9.19 4.21 Linux y

POWER5+ (gs) - CHRP
IBM,9131-52A 32 y 11.91 6.89 Linux y

POWER5 (gr) - CHRP
IBM,9123-705 32 y 7.27 2.60 Linux y

IBM/S390 - version = 00,
identification = 098942,

machine = 2097
31 y 5.88 1.25 Linux y

IBM/S390 - version = 00,
identification = 0A8942,

machine = 2097
31 y 5.48 0.85 Linux y

IBM/S390 - version = 00,
identification = 0B8942,

machine = 2097
31 y 5.53 0.87 Linux y

IBM/S390 - version = 00,
identification = 0D8942,

machine = 2097
31 y 5.34 0.83 Linux y

IBM/S390 - version = 00,
identification = 038942,

machine = 2097
31 y 5.73 0.91 Linux y

IBM/S390 - version = 00,
identification = 158942,

machine = 2097
31 y 5.40 0.83 Linux y

IBM/S390 - version = 00,
identification = 168942,

machine = 2097
31 y 5.76 1.15 Linux y

IBM/S390 - version = 00,
identification = 178942,

machine = 2097
31 y 5.29 0.81 Linux y

IBM/S390 - version = FF,
identification = 058942,

machine = 2097
31 n 6.40 1.77 Linux n

IBM/S390 - version = 00,
identification = 098942,

machine = 2097
64 y 5.94 2.04 Linux y

96

CPU WS Opt Upper Lower OS Acc
IBM/S390 - version = 00,
identification = 0A8942,

machine = 2097
64 y 5.74 1.98 Linux y

IBM/S390 - version = 00,
identification = 0B8942,

machine = 2097
64 y 5.73 1.97 Linux y

IBM/S390 - version = 00,
identification = 0D8942,

machine = 2097
64 y 5.48 1.95 Linux y

IBM/S390 - version = 00,
identification = 038942,

machine = 2097
64 y 5.81 1.99 Linux y

IBM/S390 - version = 00,
identification = 158942,

machine = 2097
64 y 5.82 1.97 Linux y

IBM/S390 - version = 00,
identification = 168942,

machine = 2097
64 y 5.85 2.02 Linux y

IBM/S390 - version = 00,
identification = 178942,

machine = 2097
64 y 5.64 1.96 Linux y

Intel(r) Itanium(r) Processor
Family 64 y 10.30 6.47 Linux y

Intel(R) Itanium(R)
Processor 9350 64 y 6.01 1.52 Linux y

Intel(R) Itanium(R)
Processor 9350 64 y 8.90 4.82 Linux y

Intel(r) Itanium(r) 2
Processor 1.4GHz with 12M

L3 Cache for 667MHz
Platforms

64 y 5.23 1.36 Linux y

Intel(R) Itanium(R)
Processor 9350 64 y 10.41 6.95 Linux y

Intel(R) Itanium(R)
Processor 9350 64 y 6.40 1.92 Linux y

Intel(r) Itanium(r) 2
Processor 1.6GHz with 18M

L3 Cache for 533MHz
Platforms

64 y 6.48 2.44 Linux y

Intel(R) Itanium(R)
Processor 9350 64 y 11.57 8.77 Linux y

Intel(r) Itanium(r) 2
Processor 1.6GHz with 18M

L3 Cache for 533MHz
Platforms

64 y 8.64 4.37 Linux y

Dual-Core Intel(R)
Itanium(R) Processor 9050 64 y 11.65 5.91 Linux y

97

CPU WS Opt Upper Lower OS Acc
Intel(r) Itanium(r) 2

Processor 1.6GHz with 18M
L3 Cache for 533MHz

Platforms

64 y 9.12 4.85 Linux y

Intel(r) Itanium(r) 2
Processor 1.6GHz with 18M

L3 Cache for 533MHz
Platforms

64 y 10.53 7.82 Linux y

Dual-Core Intel(R)
Itanium(R) 2 Processor

9140M
64 y 6.07 1.90 Linux y

Madison up to 9M cache 64 y 4.41 1.22 Linux y
Intel(r) Itanium(r) 2

Processor 1.6GHz with 18M
L3 Cache for 533MHz

Platforms

64 y 10.44 7.55 Linux y

Dual-Core Intel(R)
Itanium(R) Processor 9040 64 y 11.08 6.44 Linux y

Intel(r) Itanium(r) 2
Processor 1.6GHz with 24M

L3 Cache for 533MHz
Platforms

64 y 5.86 2.20 Linux y

Intel(r) Itanium(r) Processor
Family 64 y 12.04 8.74 Linux y

Dual-Core Intel(R)
Itanium(R) 2 Processor

9140M
64 y 6.19 2.31 Linux y

Intel(r) Itanium(r) Processor
Family 64 y 4.78 2.00 Linux y

Madison up to 9M cache 64 y 9.11 4.35 Linux y
Intel(r) Itanium(r) 2

Processor 1.6GHz with 24M
L3 Cache for 533MHz

Platforms

64 y 6.29 2.62 Linux y

Itanium 2 64 y 4.59 1.11 Linux y
Intel(r) Itanium(r) Processor

Family 64 y 5.42 1.46 Linux y

Intel(r) Itanium(r) 2
Processor 1.6GHz with 18M

L3 Cache for 533MHz
Platforms

64 y 6.01 1.69 Linux y

Dual-Core Intel(R)
Itanium(R) Processor 9040 64 y 6.03 1.96 Linux y

AMD E350 32 y 5.95 1.56 Linux y
AMD E350 32 n 6.30 2.75 Linux y

AMD Phenom X6-1035T 64 y 6.67 2.90 Linux y
AMD Phenom X6-1035T 64 n 6.55 2.93 Linux y

98

CPU WS Opt Upper Lower OS Acc
AMD Semperon 3GHz 32 y 5.00 0.91 Linux y
AMD Semperon 3GHz 32 n 5.99 2.42 Linux y

ARMv6-rev7 32 y 5.08 1.13 Android n
ARMv6-rev7 32 n 5.81 1.58 Android n

ARMv7-rev1 – Samsung
Galaxy SII 32 y 7.52 2.86 Android y

ARMv7-rev1 – Samsung
Galaxy SII 32 n 6.56 2.71 Android y

ARMv7 rev 2 – LG Nexus
4.2 32 n N/A N/A Android n

ARMv7 rev 1 – HTC Desire
Z 32 n N/A N/A Android n

AMD Athlon 4850e 64 y 3.98 2.30 Linux y
AMD Athlon 4850e 64 n 5.06 2.75 Linux y
AMD Athlon 7550 64 y 6.65 2.75 Linux y
AMD Athlon 7550 64 n 6.74 3.40 Linux y
Intel Atom Z530 32 y 5.38 2.43 Linux y
Intel Celeron 32 y 7.97 3.33 Linux y

Intel Core2Duo T5870 32 y 6.19 2.38 Linux y
Intel Core2 Q6600 32 y 6.28 2.71 Linux y
Intel Core2 Q6600 32 n 5.81 2.51 Linux y

Intel CoreDuo L2400 32 y 6.52 2.23 Linux y
Intel Core i5-2410M 64 y 7.25 3.75 Linux y
Intel Core i5-2410M 64 n 9.52 3.72 Linux y
Intel Core i5-2430M 64 y 8.10 3.55 Linux y

Intel(R) Core(TM) i7-2620M
CPU @ 2.70GHz 64 y 5.68 2.35 FreeBSD 9.1 y

Intel(R) Core(TM) i7-2620M
CPU @ 2.70GHz 64 y 6.32 1.47 NetBSD 6.0 y

Intel(R) Core(TM) i7-2620M
CPU @ 2.70GHz 64 y 9.40 3.86 OpenIndiana

151 y

Intel(R) Core(TM) i7-2620M
CPU @ 2.70GHz 64 y 6.93 2.85 Linux no

X11 y

Intel(R) Core(TM) i7-2620M
CPU @ 2.70GHz 64 y 6.79 2.97 Linux with

X11 y

Intel(R) Core(TM) i7-2620M
CPU @ 2.70GHz 64 n 8.48 3.27 Linux with

X11 y

Intel(R) Core(TM) i7-2620M
CPU @ 2.70GHz 64 y 2.11 1.72

Linux with
X11

compiled
with Clang

y

Intel(R) Core(TM) i7-2620M
CPU @ 2.70GHz 64 n 9.13 3.52

Linux with
X11

compiled
with Clang

y

Intel Core i7-Q720 64 y 7.84 2.98 Linux y
MIPS 24Kc v7.4 32 y 7.01 3.31 Linux y

99

CPU WS Opt Upper Lower OS Acc
MIPS 24Kc v4.12 32 y 7.54 3.95 Linux y
MIPS 24Kc v4.12 32 n 7.78 3.47 Linux y
MIPS 4Kec V4.8 32 n 1.83 0.46 Linux n
MIPS 4Kec V6.8 32 y 7.21 2.28 Linux y
MIPS 4Kec V6.8 32 n 10.60 5.02 Linux y

Pentium Celeron Mobile
733MHz 32 y 4.57 0.70 Linux y

Pentium Celeron Mobile
733MHz 32 n 4.38 0.49 Linux y

AMD Opteron 6128 32 y 8.03 3.90 Linux y
Pentium 4 3GHz 32 y 8.37 3.88 Linux y
Pentium 4 Mobile 32 y 5.40 1.56 Linux y

IBM System Z z10 (S390) on
z/VM 64 y 5.55 1.99 Linux y

IBM System Z z10 (S390) on
z/VM 64 n 6.37 2.11 Linux y

UltraSparc II ? y 12.45 7.74 OpenBSD y
UltraSparc II ? n 12.05 7.32 OpenBSD y

UltraSparc IIi 440MHz ? y 11.58 6.62 Linux y
UltraSparc IIi 440MHz ? n 11.82 6.86 Linux y

UltraSparc IIIi ? y 11.08 7.20 FreeBSD y
UltraSparc IIIi ? n 10.90 6.82 FreeBSD y
VIA Nano L2200 32 y 6.35 3.12 Linux y
Intel Xeon E5504 64 y 5.96 1.23 Linux y
Intel Xeon E5504 64 n 5.59 0.83 Linux y

IBM System P POWER7
using clock_gettime

64 y N/A N/A AIX 6.1 n

IBM System P POWER5
using read_real_time

64 y 7.59 2.85 AIX 6.1 y

IBM System P POWER5
using read_real_time

64 n 11.83 6.29 AIX 6.1 y

IBM System P POWER6
using read_real_time

64 y 6.71 2.86 AIX 6.1 y

IBM System P POWER6
using read_real_time

64 n 10.71 6.83 AIX 6.1 y

IBM System P POWER7
using read_real_time

64 y 7.29 3.75 AIX 6.1 y

IBM System P POWER7
using read_real_time

64 n 11.61 7.92 AIX 6.1 y

Apple MacBook Pro Intel
Core 2 Duo 32 y 6.38 2.77 Apple

MacOS 10.6 y

Apple MacBook Pro Intel
Core 2 Duo 32 n 5.57 1.82 Apple

MacOS 10.6 y

IBM System Z z10 using
STCKE

64 n 9.38 5.28 z/OS 1R13 y

100

CPU WS Opt Upper Lower OS Acc

Intel Core Duo Solo T1300 32 n 5.13 1.32
Genode with

NOVA
Microkernel

y

Intel Core Duo Solo T1300 32 n 5.04 2.04
Genode with
Fiasco.OC
Microkernel

y

Intel Core Duo Solo T1300 23 n 5.45 2.09
Genode with
Pistachio

Microkernel
y

ARM Exynos 5250 32 n 6.88 2.00 Genode with
Fiasco.OC y

ARM Exynos 5250 32 n 3.21 0.00 Genode with
BaseHW n

AMD Athlon(tm) 64 X2
Dual Core Processor 3800+ 64 y 2.00 2.00 Linux y

AMD Athlon(tm) 64 X2
Dual Core Processor 3800+ 64 n 3.88 1.47 Linux y

AMD Phenom(tm) II X4 925
Processor 64 y 1.08 1.00 Linux y

AMD Phenom(tm) II X4 925
Processor 64 n 5.63 2.58 Linux y

Intel Core2 Duo 32 n 8.22 3.53
Windows 7
with Visual

Studio
y

Apple PPC G5 Quad Core
PPC970MP 64 y 5.27 0.94

Apple
MacOS X
10.5.8

y

Apple PPC G5 Quad Core
PPC970MP 64 n 9.41 2.44

Apple
MacOS X
10.5.8

y

Apple PPC G5 Quad Core
PPC970MP 32 y 6.22 0.96

Apple
MacOS X
10.5.8

y

Apple PPC G5 Quad Core
PPC970MP 32 n 6.87 2.34

Apple
MacOS X
10.5.8

y

Intel(R) Core(TM) i7-3537U
CPU 64 n 8.76 3.81 Linux y

The table shows that all test systems at least without optimizations have a
lower boundary of more than 1 bit. This supports the quality assessment of the
CPU Jitter random number generator.

In addition, the table shows an interesting yet common trend: the newer the
CPU is, the more CPU execution time jitter is present.

Nonetheless, the following exceptions are visible:
• Intel Mobile Celeron 733 MHz: The test shows that this CPU has insuf-

ficient execution jitter entropy. However, as this CPU is considered very
old, the code has not been changed to catch this CPU behavior.

101

• IBM System Z 31 bit word size (marked as S/390 in the table above): The
tests with optimized code indicates that the lower boundary has way too
little entropy. However, when re-performing the tests on the same system
without optimization, the lower and upper boundary again show signifi-
cant improvements to values way above 1 bit. Therefore, non-optimized
code is required for this system and word size which is granted for the
compilation of the CPU Jitter random number generator. More details on
this system is given in section F.46.

• Intel Xeon E5504: Section F.7 outlines that the test result is to be con-
sidered as an outlier. There are additional tests on a different Intel Xeon
E5504 listed in the table above which show appropriate results for the
lower boundary of the Shannon Entropy. When enabling memory access,
the timing variations increase significantly above the threshold of 1 bit.

To illustrate the tests more, a subset of the tests listed in the aforementioned
table are assessed with graphs in the following subsections. The reader will find
a number of tests from the table above again in the graphs below. Note, to make
sure the illustrations show the worst case, the graphs truncate the outliers in
the test results with a cutoff value. Thus, the values for the Shannon Entropy
in the graphs below are all slightly lower than outlined in the table above. That
cutoff value is chosen to focus on the values that occur the most. That usually
discards higher values due to cache or TLB misses to illustrate a system without
any load, supporting the analysis of a worst case scenario.

F.1 Intel Core i5 4200U

Figure F.1: Lower boundary of entropy over LFSR loop in user space on Intel
Core i7 3537U

102

Figure F.2: Upper boundary of entropy over LFSR loop in user space on Intel
Core i7 3537U

F.2 Intel Core i7 3537U

Figure F.3: Lower boundary of entropy over LFSR loop in user space on Intel
Core i7 3537U

103

Figure F.4: Upper boundary of entropy over LFSR loop in user space on Intel
Core i7 3537U

F.3 Intel Core i7 2620M compiled with Clang
The graphs shown in section 5.1 are based on the test cases compiled with
GCC and executed on an Intel Core i7 2620M. Now, the same tests on user
space executed in the same environment and compiled with the Clang compiler
shows interesting results. Especially, the optimizations achieved with Clang are
astounding. Yet, these optimizations are not of interest, as the CPU Jitter
random number generator shall be compiled without optimizations as specified
in the various Makefiles and in section 3.7. The non-optimized compilation is
in line with the expected results.

104

Figure F.5: Lower boundary of entropy over LFSR loop in user space on Intel
Core i7 2620M – with optimizations

Figure F.6: Upper boundary of entropy over LFSR loop in user space on Intel
Core i7 2620M – with optimizations

105

Figure F.7: Lower boundary of entropy over LFSR loop in user space on Intel
Core i7 2620M – without optimizations

Figure F.8: Upper boundary of entropy over LFSR loop in user space on Intel
Core i7 2620M – without optimizations

106

F.4 Intel Core i5 2430M

Figure F.9: Lower boundary of entropy over LFSR loop in user space on Intel
Core i5 2430M

Figure F.10: Upper boundary of entropy over LFSR loop in user space on Intel
Core i5 2430M

107

F.5 Intel Core i5 2410M
The test system executes a Linux system with 32 bit word size even though the
CPU is capable of executing 64 bit. This shall show that the word size has no
impact on the observed CPU execution time jitter.

Figure F.11: Lower boundary of entropy over LFSR loop in user space on Intel
Core i5 2410M

108

Figure F.12: Upper boundary of entropy over LFSR loop in user space on Intel
Core i5 2410M

F.6 Intel Core i7 Q720

Figure F.13: Lower boundary of entropy over LFSR loop in user space on Intel
Core i7 Q720

109

Figure F.14: Upper boundary of entropy over LFSR loop in user space on Intel
Core i7 Q720

F.7 Intel Xeon E5504

Figure F.15: Lower boundary of entropy over LFSR loop in user space on Intel
Xeon E5504 – with optimizations

110

Figure F.16: Upper boundary of entropy over LFSR loop in user space on Intel
Xeon E5504 – with optimizations

As the lower boundary is already close to the one bit limit, the same tests
without optimizations are performed. The following graphs, however, show
even a deterioration of the entropy measurement. The reader should bear in
mind that the gathering of the data took less than 20 seconds. Therefore, a
short-lived skew may have been observed.

111

Figure F.17: Lower boundary of entropy over LFSR loop in user space on Intel
Xeon E5504 – without optimizations

Figure F.18: Upper boundary of entropy over LFSR loop in user space on Intel
Xeon E5504 – without optimizations

After re-performing the tests, the lower boundary Shannon entropy fluctu-
ates around 1 bit. Therefore, an additional statistical test is performed on an
otherwise quiet system to see whether the entropy is still above one bit, i.e.

112

closer to the upper boundary of the Shannon entropy:
byte wise
$./ ent random .out
Entropy = 7.999992 bits per byte.

Optimum compression would reduce the size
of this 22188032 byte file by 0 percent .

Chi square distribution for 22188032 samples is 260.80 , and randomly
would exceed this value 50.00 percent of the times .

Arithmetic mean value of data bytes is 127.5139 (127.5 = random).
Monte Carlo value for Pi is 3.141290507 (error 0.01 percent).
Serial correlation coefficient is 0.000043 (totally uncorrelated = 0.0).

bit wise
$./ ent -b random .out
Entropy = 1.000000 bits per bit.

Optimum compression would reduce the size
of this 178159616 bit file by 0 percent .

Chi square distribution for 178159616 samples is 1.39 , and randomly
would exceed this value 50.00 percent of the times .

Arithmetic mean value of data bits is 0.5000 (0.5 = random).
Monte Carlo value for Pi is 3.141272175 (error 0.01 percent).
Serial correlation coefficient is -0.000187 (totally uncorrelated = 0.0).

The statistical tests shows that still no patterns are visible. Hence, the CPU
is to be considered appropriate for entropy harvesting.

F.8 Intel Core 2 Quad Q6600
The tests were executed with OpenSUSE 12.3. The tests were executed without
a graphical interface.

Figure F.19: Lower boundary of entropy over LFSR loop in user space on Intel
Core 2 Quad Q6600 – with optimizations

113

Figure F.20: Upper boundary of entropy over LFSR loop in user space on Intel
Core 2 Quad Q6600 – with optimizations

The same test compiled without optimizations is shown in the following
graphs.

Figure F.21: Lower boundary of entropy over LFSR loop in user space on Intel
Core 2 Quad Q6600 – without optimizations

114

Figure F.22: Upper boundary of entropy over LFSR loop in user space on Intel
Core 2 Quad Q6600 – without optimizations

F.9 Intel Core 2 Duo T5870

Figure F.23: Lower boundary of entropy over LFSR loop in user space on Intel
Core 2 Duo T5870

115

Figure F.24: Upper boundary of entropy over LFSR loop in user space on Intel
Core 2 Duo T5870

F.10 Intel Core 2 Duo With Windows 7

Figure F.25: Lower boundary of entropy over LFSR loop in user space on Intel
Core 2 Duo with Windows – without optimizations

116

Figure F.26: Upper boundary of entropy over LFSR loop in user space on Intel
Core 2 Duo with Windows – without optimizations

F.11 Intel Core Duo L2400

Figure F.27: Lower boundary of entropy over LFSR loop in user space on Intel
Core Duo L2400

117

Figure F.28: Upper boundary of entropy over LFSR loop in user space on Intel
Core Duo L2400

F.12 Intel Core Duo Solo T1300 With NOVA Microkernel

Figure F.29: Lower boundary of entropy over LFSR loop in user space on Intel
Core Duo Solo T1300 with Nova Microkernel

118

Figure F.30: Upper boundary of entropy over LFSR loop in user space on Intel
Core Duo Solo T1300 with Nova Microkernel

F.13 Intel Core Duo Solo T1300 With Fiasco.OC Micro-
kernel

Figure F.31: Lower boundary of entropy over LFSR loop in user space on Intel
Core Duo Solo T1300 with Fiasco.OC Microkernel

119

Figure F.32: Upper boundary of entropy over LFSR loop in user space on Intel
Core Duo Solo T1300 with Fiasco.OC Microkernel

F.14 Intel Core Duo Solo T1300 With Pistachio Micro-
kernel

Figure F.33: Lower boundary of entropy over LFSR loop in user space on Intel
Core Duo Solo T1300 with Pistachio Microkernel

120

Figure F.34: Upper boundary of entropy over LFSR loop in user space on Intel
Core Duo Solo T1300 with Pistachio Microkernel

F.15 Intel Atom Z530

Figure F.35: Lower boundary of entropy over LFSR loop in user space on Intel
Atom Z530

121

Figure F.36: Upper boundary of entropy over LFSR loop in user space on Intel
Atom Z530

F.16 Intel Core 2 Duo on Apple MacBook Pro
The following test was executed on an Apple MacBook Pro executing MacOS
X 10.8. The compilation was done using GCC.

Figure F.37: Lower boundary of entropy over LFSR loop in user space on Apple
MacBook Pro – with optimizations

122

Figure F.38: Upper boundary of entropy over LFSR loop in user space on Apple
MacBook Pro – with optimizations

F.17 Intel Celeron

Figure F.39: Lower boundary of entropy over LFSR loop in user space on Intel
Celeron

123

Figure F.40: Upper boundary of entropy over LFSR loop in user space on Intel
Celeron

F.18 Intel Mobile Celeron 733 MHz
The test was compiled without optimizations.

Figure F.41: Lower boundary of entropy over LFSR loop in user space on Intel
Mobile Celeron

124

Figure F.42: Upper boundary of entropy over LFSR loop in user space on Intel
Mobile Celeron

The tests results indicate that the CPU execution time jitter is insufficient
for entropy collection. However, as this CPU is considered so old, the code has
not been changed to catch this CPU behavior.

125

F.19 Intel Pentium P4 3GHz

Figure F.43: Lower boundary of entropy over LFSR loop in user space on Intel
Pentium P4 3GHz

Figure F.44: Upper boundary of entropy over LFSR loop in user space on Intel
Pentium P4 3GHz

126

F.20 Intel Pentium P4 Mobile

Figure F.45: Lower boundary of entropy over LFSR loop in user space on Intel
Pentium P4 Mobile

Figure F.46: Upper boundary of entropy over LFSR loop in user space on Intel
Pentium P4 Mobile

127

As the Shannon entropy values and the distribution may suggest that patterns
are present, the following statistical test is executed, showing that no patterns
are visible. Therefore, the CPU execution time jitter is considered to be appro-
priate for harvesting entropy.
byte -wise
$ ent random - p4mobile .data
Entropy = 7.999998 bits per byte.

Optimum compression would reduce the size
of this 108351488 byte file by 0 percent .

Chi square distribution for 108351488 samples is 230.51 , and randomly
would exceed this value 75.00 percent of the times .

Arithmetic mean value of data bytes is 127.5061 (127.5 = random).
Monte Carlo value for Pi is 3.141212037 (error 0.01 percent).
Serial correlation coefficient is 0.000075 (totally uncorrelated = 0.0).

bit -wise
$ ent -b random - p4mobile .data
Entropy = 1.000000 bits per bit.

Optimum compression would reduce the size
of this 866811904 bit file by 0 percent .

Chi square distribution for 866811904 samples is 0.12 , and randomly
would exceed this value 50.00 percent of the times .

Arithmetic mean value of data bits is 0.5000 (0.5 = random).
Monte Carlo value for Pi is 3.141212037 (error 0.01 percent).
Serial correlation coefficient is 0.000023 (totally uncorrelated = 0.0).

F.21 AMD Opteron 6128

Figure F.47: Lower boundary of entropy over LFSR loop in user space on AMD
Opteron 6128

128

Figure F.48: Upper boundary of entropy over LFSR loop in user space on AMD
Opteron 6128

F.22 AMD Phenom II X6 1035T

Figure F.49: Lower boundary of entropy over LFSR loop in user space on AMD
Phenom II X6 1035T

129

Figure F.50: Upper boundary of entropy over LFSR loop in user space on AMD
Phenom II X6 1035T

F.23 AMD Athlon 7550

Figure F.51: Lower boundary of entropy over LFSR loop in user space on AMD
Athlon 7550 – with optimizations

130

Figure F.52: Upper boundary of entropy over LFSR loop in user space on AMD
Athlon 7550 – with optimizations

The same tests without optimizations show the following results:

Figure F.53: Lower boundary of entropy over LFSR loop in user space on AMD
Athlon 7550 – without optimizations

131

Figure F.54: Upper boundary of entropy over LFSR loop in user space on AMD
Athlon 7550 – without optimizations

F.24 AMD Athlon 4850e

Figure F.55: Lower boundary of entropy over LFSR loop in user space on AMD
Athlon 4850e – with optimizations

132

Figure F.56: Upper boundary of entropy over LFSR loop in user space on AMD
Athlon 4850e – with optimizations

The optimized tests show very low variations, albeit the graphs are slightly
misleading as one histogram bar contain up to three consecutive values. The
same tests without optimizations show the following results:

Figure F.57: Lower boundary of entropy over LFSR loop in user space on AMD
Athlon 4850e – without optimizations

133

Figure F.58: Upper boundary of entropy over LFSR loop in user space on AMD
Athlon 4850e – without optimizations

F.25 AMD E350

Figure F.59: Lower boundary of entropy over LFSR loop in user space on AMD
E350 – with optimizations

134

Figure F.60: Upper boundary of entropy over LFSR loop in user space on AMD
E350 – with optimizations

The same tests without optimizations show the following results:

Figure F.61: Lower boundary of entropy over LFSR loop in user space on AMD
E350 – without optimizations

135

Figure F.62: Upper boundary of entropy over LFSR loop in user space on AMD
E350 – without optimizations

F.26 AMD Semperon 3GHz

Figure F.63: Lower boundary of entropy over LFSR loop in user space on AMD
Semperon 3GHz – with optimizations

136

Figure F.64: Upper boundary of entropy over LFSR loop in user space on AMD
Semperon 3GHz – with optimizations

The graphs show that lower boundary of the CPU timing jitter over the LFSR
operation contains less than 1 bit of entropy. This statement has the potential
to significantly weaken the quality of this random number generator. However,
as outlined at the beginning, the tests are performed with optimized code. Opti-
mization streamline the code such that the resulting binary does not fully follow
the strict C code sequences, but the compiler tries to ensure that the result is
always the same. As the quality of the CPU Jitter random number generator
depends on the timing behavior and not so much on the result of computations,
optimizations are not important for the random number generator.

To ensure that optimizations are the problem of the insufficient execution
jitter as the execution time is made too fast on fast, but less complex CPUs,
the same test without optimizations is invoked again. To compile code without
optimizations, either use no special flags or -O0.

137

Figure F.65: Lower boundary of entropy over LFSR loop in user space on AMD
Semperon 3GHz – without optimizations

Figure F.66: Upper boundary of entropy over LFSR loop in user space on AMD
Semperon 3GHz – without optimizations

Looking at the Shannon Entropy value a conclusion can be drawn that with-
out optimizations, the required CPU execution timing jitter is present with a
sufficient rate.

138

To support the conclusion that the compilation of non-optimized code on
an AMD Semperon still produces high-quality random numbers, the statistical
testing with ent is performed:

Listing 5: Statistical Properties of Non-Optimized Code on AMD Semperon
byte -wise
$ ent entropy . amdsemperon .O0
Entropy = 7.999968 bits per byte.

Optimum compression would reduce the size
of this 5525504 byte file by 0 percent .

Chi square distribution for 5525504 samples is 247.18 , and randomly
would exceed this value 50.00 percent of the times .

Arithmetic mean value of data bytes is 127.5252 (127.5 = random).
Monte Carlo value for Pi is 3.142346161 (error 0.02 percent).
Serial correlation coefficient is -0.000274 (totally uncorrelated = 0.0).

bit -wise
$ ent -b entropy . amdsemperon .O0
Entropy = 1.000000 bits per bit.

Optimum compression would reduce the size
of this 44204032 bit file by 0 percent .

Chi square distribution for 44204032 samples is 2.54 , and randomly
would exceed this value 25.00 percent of the times .

Arithmetic mean value of data bits is 0.5001 (0.5 = random).
Monte Carlo value for Pi is 3.142346161 (error 0.02 percent).
Serial correlation coefficient is 0.000115 (totally uncorrelated = 0.0).

F.27 VIA Nano L2200

Figure F.67: Lower boundary of entropy over LFSR loop in user space on VIA
Nano L2200

139

Figure F.68: Upper boundary of entropy over LFSR loop in user space on VIA
Nano L2200

F.28 MIPS 24KC v7.4
This test was executed on a Ubiquiti NanoStation M5 providing a Freifunk
router. The OS on that system is modified with OpenWRT.

Figure F.69: Lower boundary of entropy over LFSR loop in user space on MIPS
24KC v7.4

140

http://www.ubnt.com/airmax#nanostationm
http://wiki.openwrt.org/

Figure F.70: Upper boundary of entropy over LFSR loop in user space on MIPS
24KC v7.4

F.29 MIPS 24KC v4.12 Ikanos Fusiv Core
This test without optimization was executed on a Fritz Box 7390 providing a
home router. The OS on that Fritz Box is modified with Freetz.

Figure F.71: Lower boundary of entropy over LFSR loop in user space without
optimization on MIPS 24KC v4.2

141

http://www.avm.de/de/Produkte/FRITZBox/FRITZ_Box_Fon_WLAN_7390/index.php
http://freetz.org/

Figure F.72: Upper boundary of entropy over LFSR loop in user space without
optimization on MIPS 24KC v7.4

F.30 MIPS 4KEc V6.8
This test was executed on a Fritz Box 7270 providing a home router. The OS
on that Fritz Box is modified with Freetz.

Figure F.73: Lower boundary of entropy over LFSR loop in user space on MIPS
4KEc V6.8 – with optimizations

142

http://www.avm.de/de/Produkte/FRITZBox/FRITZ_Box_Fon_WLAN_7270/index.php
http://freetz.org/

Figure F.74: Upper boundary of entropy over LFSR loop in user space on MIPS
4KEc V6.8 – with optimizations

Just to give the reader an impression how the optimization changes the
measurement, here is the same CPU measurement without optimization.

Figure F.75: Lower boundary of entropy over LFSR loop in user space on MIPS
4KEc V6.8 – without optimizations

143

Figure F.76: Upper boundary of entropy over LFSR loop in user space on MIPS
4KEc V6.8 – without optimizations

To support the conclusion that this CPU is an appropriate source for en-
tropy, the following statistical analysis was performed. This analysis shows the
suitability of the gathered data:
byte -wise
$ ent random . fritz7270 .out
Entropy = 7.999997 bits per byte.

Optimum compression would reduce the size
of this 58580496 byte file by 0 percent .

Chi square distribution for 58580496 samples is 241.25 , and randomly
would exceed this value 50.00 percent of the times .

Arithmetic mean value of data bytes is 127.4989 (127.5 = random).
Monte Carlo value for Pi is 3.141300135 (error 0.01 percent).
Serial correlation coefficient is 0.000129 (totally uncorrelated = 0.0).

bit -wise
$ ent -b random . fritz7270 .out
Entropy = 1.000000 bits per bit.

Optimum compression would reduce the size
of this 468643968 bit file by 0 percent .

Chi square distribution for 468643968 samples is 0.01 , and randomly
would exceed this value 75.00 percent of the times .

Arithmetic mean value of data bits is 0.5000 (0.5 = random).
Monte Carlo value for Pi is 3.141300135 (error 0.01 percent).
Serial correlation coefficient is 0.000042 (totally uncorrelated = 0.0).

F.31 MIPS 4KEc V4.8
This test was executed on a T-Com Speedport W701V providing a home router.
The OS on that Speedport router is modified with Freetz.

144

http://freetz.org/

The following measurements were conducted without optimizations.

Figure F.77: Lower boundary of entropy over LFSR loop in user space on MIPS
4KEc V4.8 – without optimizations

Figure F.78: Upper boundary of entropy over LFSR loop in user space on MIPS
4KEc V4.8 – without optimizations

The graph indicates and the measurement of the Shannon Entropy concludes

145

that the CPU execution time jitter on this CPU is too small. The reason for
that is the coarse counter which increments in multiples of 1,000. However,
the good news is that on this CPU, the jent_entropy_init(3) call would fail,
informing the caller about to not use the CPU Jitter random number generator.

F.32 ARM Exynos 5250 with Fiasco.OC Microkernel
The following measurements were conducted without optimizations.

Figure F.79: Lower boundary of entropy over LFSR loop in user space on Exynos
5250 with Fiasco.OC – without optimizations

146

Figure F.80: Upper boundary of entropy over LFSR loop in user space on
Exynos 5250 with Fiasco.OC – without optimizations

F.33 ARMv7 rev 1 – Samsung Galaxy S2
This test was executed on a Samsung Galaxy S2 with CyanogenMod 9 (Android
4.1). The clocksource (which is the backend to the clock_gettime(CLOCK_REALTIME)
system call) is:
$ cat /sys/ devices / system / clocksource / clocksource0 / available_clocksource
mct -frc
$ cat /sys/ devices / system / clocksource / clocksource0 / current_clocksource
mct -frc

147

Figure F.81: Lower boundary of entropy over LFSR loop in user space on
ARMv7 rev 1 – with optimizations

Figure F.82: Upper boundary of entropy over LFSR loop in user space on
ARMv7 rev 1 – with optimizations

Although the tests with optimizations already indicate sufficient entropy, the
same test without optimizations is conducted with the following results just to
illustrate the appropriateness of the entropy source.

148

Figure F.83: Lower boundary of entropy over LFSR loop in user space on
ARMv7 rev 1 – without optimizations

Figure F.84: Upper boundary of entropy over LFSR loop in user space on
ARMv7 rev 1 – without optimizations

149

F.34 ARMv7 rev 2 – LG Nexus 4.2
The tests on a LG Nexus 4 with a ARMv7 rev 2 CPU and a Linux kernel 3.4
yielded in the following result: most of the time delta values were zero. This
implies that the jent_entropy_init(3) call rejects this system.

F.35 ARMv7 rev 0 – Samsung Galaxy S4
The tests on a Samsung Galaxy S4 with a ARMv7 rev 0 CPU and a Linux
kernel 3.4 yielded in the following result: most of the time delta values were
zero. This implies that the jent_entropy_init(3) call rejects this system.

The clocksources tested are: gp_timer. When enabling the dg_timer clock-
source, the system reboots after 10 seconds and can therefore not be used.

F.36 ARMv7 rev 1 – HTC Desire Z
The tests on a HTC Desire Z with a ARMv7 rev 1 CPU and a Linux kernel
2.6.32 shows the following results: most of the time delta values were zero. This
implies that the jent_entropy_init(3) call rejects this system.

It is unclear whether the coarse timing values is due to an old hardware timer
or whether the Linux system does not support the readout of the high-resolution
timer. The Linux kernel up to version 3.2 did not implement a callback for
random_get_entropy on an ARM platform. Therefore it is possible that the
old Android version on the smartphone did not implement access to a potentially
available high-resolution timer.

F.37 ARMv6 rev 7
This test was executed on a Raspberry Pi with Linux kernel 3.6.

150

http://www.raspberrypi.org/

Figure F.85: Lower boundary of entropy over LFSR loop in user space on
ARMv6 rev 7 – with optimizations

Figure F.86: Upper boundary of entropy over LFSR loop in user space on
ARMv6 rev 7 – with optimizations

Just to give the reader an impression how the optimization changes the
measurement and to demonstrate that without optimizations the entropy is
higher, here is the same CPU measurement without optimization.

151

Figure F.87: Lower boundary of entropy over LFSR loop in user space on
ARMv6 rev 7 – without optimizations

Figure F.88: Upper boundary of entropy over LFSR loop in user space on
ARMv6 rev 7 – without optimizations

Even though the Shannon Entropy would allow the CPU execution jitter
to be used, the timer is too coarse and jent_entropy_init does not pass this
CPU, because the timer is too coarse as it increments in steps of 1,000. As it is

152

visible in the graphs with the lower boundaries, the majority of entropy comes
from two values for the time delta.

F.38 IBM POWER7 with AIX 6.1
The tests with AIX 6.1 executing within an IBM LPAR on an IBM POWER7
CPU and the code obtaining the timer with the POSIX function call of clock_gettime
yielded the following result: the time delta values were all divisible by 1,000.
This implies that the jent_entropy_init(3) call rejects this system.

However, AIX provides a second function to read a high-resolution timer:
read_real_time. When using this function – which is the case as defined in
jitterentropy-base-user.h – returns a time stamp that is fine grained with
the following graphs.

Figure F.89: Lower boundary of entropy over LFSR loop in user space on AIX
6.1 and POWER7 – with optimizations

153

Figure F.90: Upper boundary of entropy over LFSR loop in user space on AIX
6.1 and POWER7 – with optimizations

Just to give the reader an impression how the optimization changes the
measurement and to demonstrate that without optimizations the entropy is
higher, here is the same CPU measurement without optimization.

Figure F.91: Lower boundary of entropy over LFSR loop in user space on AIX
6.1 and POWER7 – without optimizations

154

Figure F.92: Upper boundary of entropy over LFSR loop in user space on AIX
6.1 and POWER7 – without optimizations

F.39 IBM POWER7 with Linux

Figure F.93: Lower boundary of entropy over LFSR loop in user space on IBM
POWER7

155

Figure F.94: Upper boundary of entropy over LFSR loop in user space on IBM
POWER7

F.40 IBM POWER5 with Linux

Figure F.95: Lower boundary of entropy over LFSR loop in user space on IBM
POWER5

156

Figure F.96: Upper boundary of entropy over LFSR loop in user space on IBM
POWER5

F.41 Apple G5 QuadCore PPC 970MP
The following tests were executed on an Apple G5 Quad-Core with PowerPC
970MP CPU and Apple MacOS X 10.5.8. The word size of the tests is 32 bit.
However, the 64 bit word size show similar results as indicated in the table at
the beginning of this appendix.

The tests show that the optimized compilation contain insufficient jitter as
the Shannon Entropy of the lower boundary is less than 1 bit, whereas the
non-optimized compilation shows a sufficient jitter.

157

Figure F.97: Lower boundary of entropy over LFSR loop in user space on Apple
G5 with optimizations

Figure F.98: Upper boundary of entropy over LFSR loop in user space on on
Apple G5 with optimizations

158

Figure F.99: Lower boundary of entropy over LFSR loop in user space on Apple
G5 without optimizations

Figure F.100: Upper boundary of entropy over LFSR loop in user space on on
Apple G5 with optimizations

F.42 SUN UltraSparc IIIi
This test was executed on a SUN UltraSparc-IIIi with FreeBSD 9.1.

159

The graph for the lower boundary is impressive: it looks like a normal dis-
tribution!

Figure F.101: Lower boundary of entropy over LFSR loop in user space on SUN
UltraSparc IIIi – with optimizations

Figure F.102: Upper boundary of entropy over LFSR loop in user space on SUN
UltraSparc IIIi – with optimizations

160

Just to give the reader an impression how the optimization changes the
measurement and to demonstrate that without optimizations the entropy is
higher, here is the same CPU measurement without optimization.

Figure F.103: Lower boundary of entropy over LFSR loop in user space on SUN
UltraSparc IIIi – without optimizations

Figure F.104: Upper boundary of entropy over LFSR loop in user space on SUN
UltraSparc IIIi – without optimizations

161

F.43 SUN UltraSparc II
This test was executed on a SUN UltraSparc-II with OpenBSD 5.3.

Figure F.105: Lower boundary of entropy over LFSR loop in user space on SUN
UltraSparc II – with optimizations

Figure F.106: Upper boundary of entropy over LFSR loop in user space on SUN
UltraSparc II – with optimizations

162

The same tests were executed without optimizations. No material differences
in the distribution are present.

F.44 SUN UltraSparc IIi (Sabre)
This test was executed on a SUN UltraSparc-IIi with 440MHz executing Gentoo
2.1. The operating system is configured without a graphical interface.

Figure F.107: Lower boundary of entropy over LFSR loop in user space on SUN
UltraSparc IIi – with optimizations

163

Figure F.108: Upper boundary of entropy over LFSR loop in user space on SUN
UltraSparc-IIi – with optimizations

Just to give the reader an impression how the optimization changes the
measurement and to demonstrate that without optimizations the entropy is
higher, here is the same CPU measurement without optimization.

Figure F.109: Lower boundary of entropy over LFSR loop in user space on SUN
UltraSparc IIi – without optimizations

164

Figure F.110: Upper boundary of entropy over LFSR loop in user space on SUN
UltraSparc IIi – without optimizations

F.45 IBM System Z z10
This test was executed on an IBM System Z EC12 offering a z/VM virtual
machine with one CPU to a z/OS 1R13.

Figure F.111: Lower boundary of entropy over LFSR loop in user space on z/OS
– without optimizations

165

Due to the values being so large, the value for the Shannon Entropy is
truncated in the graph above. That value is the same as printed in the able at
the beginning of this appendix: 5.28 bits.

Figure F.112: Upper boundary of entropy over LFSR loop in user space on zOS
– without optimizations

Due to the values being so large, the value for the Shannon Entropy is
truncated in the graph above. That value is the same as printed in the able at
the beginning of this appendix: 9.38 bits.

The graphs show a similar pattern to other systems in other sections. How-
ever, the timer values have much larger numbers than for any other test. The
reason is the way how the timer is read and the fact that System Z mainframes
have a timer that has a much higher resolution. The timer is read with the
STCKE processor instruction such that the moving 64 low bits of the 128 bit
value returned by STCKE are returned. That means that the lowest 7 bits are
cut off which do not contain timer information as specified in the processor
manual.

F.46 IBM System Z z10
This test was executed on an IBM System Z z10 offering a z/VM virtual machine
with one CPU to a SLES11 SP2.

F.46.1 64 bit Word Size

The processor is identified as “version = FF, identification = 058942, machine
= 2097”.

166

Figure F.113: Lower boundary of entropy over LFSR loop in user space on IBM
System Z z10 – 64 bit with optimizations

Figure F.114: Upper boundary of entropy over LFSR loop in user space on IBM
System Z z10 – 64 bit with optimizations

Just to give the reader an impression how the optimization changes the
measurement and to demonstrate that without optimizations the entropy is
higher, here is the same CPU measurement without optimization.

167

Figure F.115: Lower boundary of entropy over LFSR loop in user space on IBM
System Z z10 – 64 bit without optimizations

Figure F.116: Upper boundary of entropy over LFSR loop in user space on IBM
System Z z10 – 64 bit without optimizations

168

F.46.2 31 bit Word Size

The same hardware system is tested when compiling the test with 31 bit word
size.

Figure F.117: Lower boundary of entropy over LFSR loop in user space on IBM
System Z z10 – 31 bit with optimizations

Figure F.118: Upper boundary of entropy over LFSR loop in user space on IBM
System Z z10 – 31 bit with optimizations

169

As already indicated in the table at the beginning of Appendix F the mea-
surements of 31 bit compilations on an IBM System Z with optimizations show
way to little entropy at the lower boundary. This is visible in the graphs above.
Therefore, the tests are re-performed without optimizations, i.e. the compilation
of a regular CPU Jitter random number generator. These new measurements
are given in the graphs below. They show a significant improvement over the
optimized code. The test without optimizations show a sufficient entropy that
is significantly higher than the optimized code. Therefore, when using the non-
optimized code, which is the case for the regular runtime of the RNG, the 31
bit word size on IBM System Z is considered appropriate.

Figure F.119: Lower boundary of entropy over LFSR loop in user space on IBM
System Z z10 – 31 bit without optimizations

170

Figure F.120: Upper boundary of entropy over LFSR loop in user space on IBM
System Z z10 – 31 bit without optimizations

F.47 Intel Core i7 2620M With RDTSC Instruction
The following tests were executed on the same hardware, but with different
operating systems to allow analyzing the impact of the operating system on the
CPU execution time jitter.

To avoid any interference from context switches and similar, the time stamp
is gathered by fetching it directly from the CPU with the following assembler
code:
/* taken from Linux kernel */
define DECLARE_ARGS (val , low , high) unsigned low , high
define EAX_EDX_VAL (val , low , high) ((low) | ((__u64)(high) << 32))
define EAX_EDX_RET (val , low , high) "=a" (low), "=d" (high)

static inline void jent_get_nstime (__u64 *out)
{

DECLARE_ARGS (val , low , high);
asm volatile (" rdtsc " : EAX_EDX_RET (val , low , high));
*out = EAX_EDX_VAL (val , low , high);

}

With this change, the CPU Jitter random number generator only uses the
malloc and free functions during startup and termination from the operating
systems and no other mechanism! The header file that provides this code is
found in arch/jitterentropy-base-x86.h and is a drop-in replacement of
jitterentropy-base-user.h.

As different compilers are used to generate the binaries for the different
operating systems, all tests were compiled without optimization.

When comparing the different graphs, the following findings can be drawn:

• The user space of the operating system has an impact on the measure-
ments. If a large number of user space applications are executing, includ-

171

ing X11, the CPU execution time jitter is significantly larger compared
to systems where hardly any user space application is running in parallel
with the measurements.

• The size of the kernel has no significant impact on the CPU execution
time jitter. Although the mean values of the tests on the BSD systems
and the Linux system without X11 differ significantly, the jitter size itself
represented by the number of different time delta values16 does not differ
significantly.

Still, the final conclusion is that regardless of the used operating system, the
CPU execution time jitter measurements indicate that the random number gen-
erator can be used on all systems.

F.47.1 Ubuntu Linux 13.04 with KDE

The following test was executed on an Ubuntu 13.04 with the graphical envi-
ronment of KDE was running.

Figure F.121: Lower boundary of entropy over LFSR loop in user space on
Ubuntu Linux 13.04 with KDE and Intel Core i7 2620M

16I.e. the number of bars in the histogram.

172

Figure F.122: Upper boundary of entropy over LFSR loop in user space on
Ubuntu Linux 13.04 with KDE and Intel Core i7 2620M

F.47.2 Ubuntu Linux 13.04 without X11

The following test was executed on an Ubuntu 13.04 that was booted with the
kernel command line option of init=/bin/bash. This option implies that no
user space processes besides init and bash were running. Especially, no X11
windowing system was executing.

173

Figure F.123: Lower boundary of entropy over LFSR loop in user space on
Ubuntu Linux 13.04 without X11 and Intel Core i7 2620M

Figure F.124: Upper boundary of entropy over LFSR loop in user space on
Ubuntu Linux 13.04 without X11 and Intel Core i7 2620M

F.47.3 OpenIndiana 151a7

The desktop version of OpenIndiana was installed which implied that X11 with
Gnome was up and running.

174

Figure F.125: Lower boundary of entropy over LFSR loop in user space on
OpenIndiana 151a7 and Intel Core i7 2620M

Figure F.126: Upper boundary of entropy over LFSR loop in user space on
OpenIndiana 151a7 and Intel Core i7 2620M

175

F.47.4 NetBSD 6.0

The LiveCD image for NetBSD was used that did not execute X11 and hardly
any other user space applications.

Figure F.127: Lower boundary of entropy over LFSR loop in user space on
NetBSD 6.0 and Intel Core i7 2620M

Figure F.128: Upper boundary of entropy over LFSR loop in user space on
NetBSD 6.0 and Intel Core i7 2620M

176

F.47.5 FreeBSD 9.1

The LiveCD image for FreeBSD was used that did not execute X11 and hardly
any other user space applications.

Figure F.129: Lower boundary of entropy over LFSR loop in user space on
FreeBSD 9.1 and Intel Core i7 2620M

Figure F.130: Upper boundary of entropy over LFSR loop in user space on
FreeBSD 9.1 and Intel Core i7 2620M

177

G BSI AIS 20 / 31 NTG.1 Properties
The CPU Jitter random number generator is believed to comply with the BSI
AIS 20 / 31 NTG.1 properties as follows:

NTG.1.1 See comments in jent_entropy_init which show that statistical
defects in the noise source, i.e. the timing jitter are identified. Covered

NTG.1.2 The jent_read_entropy function will only read from an entropy
pool when the entire entropy collection loop is completed. As this loop
fills the entropy pool with full entropy as described in chapter 5 supported
by section 5.1, even in the worst case the CPU Jitter random number
generator ensures to provide the requested entropy to the caller. Covered

NTG.1.3 The timing jitter is an unpredictable noise source as shown in chap-
ter 2. The entropy in the noise source is magnified by mixing it into an
entropy pool by retaining its entropy and ensuring that the entropy is
conveyed to the caller by delivering a random bit string. Section 8 bullet
9 outlines the perfect forward and backward secrecy. Covered

NTG.1.4 To generate 128 bits from the RNG, we pull twice from entropy pool
and concatenate the two random values – as it is done in jent_read_entropy.
Let us assume the birthday paradox where a collision of 264 random values
of size 128 bits occurs with the probability of

P (collisions after 264 randomvalues) = 0.3935

The number of n pariwise different bit strings with a length of 128 bits is

A = 2128 · (2128 − 1) · ... · (2128 − n+ 1)

The probability therefore is:

P (n) = A

2128n

Using the estimation
A > (2128 − n+ 1)n

we have a lower boundary for P. Thus, we can calculate, for example, that
255 bit strings of length 128 bits following each other are pairwise different
with probability of P>0.999996. Thus, when using k > 255 bit string with
length 128 bits, and these strings show no collision with probability of P
> 1 - e, with e 3.8e-6, the bit strings are pairwise different. This result
satisfies even AVA_VAN.5. The analysis rests on the assumption that
the bit stream follow an rectangular distribution, i.e. the bit stream is a
white noise. The discussion of the statistical properties of the bit stream
in chapter 4 demonstrates the property of a white noise. Covered

NTG.1.5 All of the following statistical tests pass even though the seed source
is not processed with a cryptographic whitening function!

• BSI Test procedure A is passed.
• BSI Test suite A is passed

178

• dieharder test passed on kernel and user space generator
• ent test passed

Covered

NTG.1.6 Using ent we get 7.9999... bits of entropy per byte. That value is the
Shannon entropy of the input data. This value implies that we have more
than 99.7% (Shannon) entropy in the output. In addition, the discussion
in chapter 5 supports the statement that more than 99.7% entropy is
present in the output. Covered

H Bibliographic Reference

References
[Turan et al.(2018)Turan, Barker, Kelsey, McKay, Baish, and Boyle]

Meltem Sönmez Turan, Elaine Barker, John Kelsey, Kerry A. McKay,
Mary L. Baish, and Mike Boyle. NIST Special Publication 800-90B
Recommendation for the Entropy Sources Uses for Random Bit Generation.
2018.

I Thanks
Special thanks for providing input as well as mathematical support goes to:

• Yi Mao

• Steve Weingart

• Jeremy Powell

• Gerald Krummeck

• Michael Robrecht

• Roman Drahtmüller

• Louis Losee

• Josef Söntgen

• Sandy Harris

Also, special thanks go to all people executed the test applications to gather
the results in appendix F.

179

J License
The implementation of the CPU Jitter random number generator, all support
mechanisms, the test cases and the documentation are subject to the following
license.

Copyright Stephan Müller <smueller@chronox.de>, 2013.
Redistribution and use in source and binary forms, with or without modifi-

cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
and the entire permission notice in its entirety, including the disclaimer of
warranties.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.

ALTERNATIVELY, this product may be distributed under the terms of the
GNU General Public License, in which case the provisions of the GPL are re-
quired INSTEAD OF the above restrictions. (This clause is necessary due to a
potential bad interaction between the GPL and the restrictions contained in a
BSD-style copyright.)

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IM-
PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ALL OF WHICH ARE HEREBY DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF NOT
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

180

	1 Introduction
	1.1 Related Work
	1.2 Applicable Code Version

	2 CPU Execution Time Jitter
	2.1 Assumptions
	2.2 Jitter Depicted

	3 Random Number Generator Design
	3.1 Maintenance of Entropy
	3.1.1 Noise Source: Memory Access
	3.1.2 Obtaining Time Delta
	3.1.3 Noise Source: Inject Time Delta Into Entropy Pool Using An LFSR

	3.2 Generation of Random Number Bit Stream
	3.3 Runtime Health Tests
	3.3.1 Stuck Test
	3.3.2 Repetition Count Test
	3.3.3 Adaptive Proportion Test

	3.4 Initialization
	3.5 Memory Protection
	3.6 Locking
	3.7 Intended Method of Use
	3.8 Programming Dependencies on Operating System

	4 Random Generator Statistical Assessment
	4.1 Statistical Properties of Entropy Pool
	4.2 Statistical Properties of Random Number Bit Stream
	4.3 Anti-Tests
	4.3.1 Static Increment of Time Stamp
	4.3.2 Pattern-based Increment of Time Stamp
	4.3.3 Disabling of System Features

	5 Entropy Behavior
	5.1 Base Entropy Source
	5.1.1 Noise Sources Depicted

	6 Assessment of Noise Sources
	6.1 CPU Execution Timing Jitter
	6.1.1 Serialization Instruction
	6.1.2 Prevention of System Call And Branch Prediction Interference
	6.1.3 Flush of CPU Instruction Pipeline
	6.1.4 Flush of CPU Caches
	6.1.5 Disabling of Preemption
	6.1.6 TLB Flush
	6.1.7 Pinning of Entropy Collection to one CPU
	6.1.8 Disabling of Frequency Scaling and Power Management
	6.1.9 Disabling of L1 and L2 Caches
	6.1.10 Disabling of L1 and L2 Caches And Interrupts
	6.1.11 Disabling of All CPU Mechanisms

	6.2 Memory Access Testing
	6.2.1 Noise Source Discussion
	6.2.2 Noise Source Measurements
	6.2.3 Memory Accesses and LFSR Loop

	6.3 Noise Source Testing Without Operating System

	7 Standards Compliance
	7.1 FIPS 140-2 Compliance
	7.1.1 FIPS 140-2 IG 7.18 Requirement For Statistical Testing
	7.1.2 FIPS 140-2 IG 7.18 Heuristic Analysis
	7.1.3 FIPS 140-2 IG 7.18 Additional Comment 1
	7.1.4 FIPS 140-2 IG 7.18 Additional Comment 2
	7.1.5 FIPS 140-2 IG 7.18 Additional Comment 3
	7.1.6 FIPS 140-2 IG 7.18 Additional Comment 4
	7.1.7 FIPS 140-2 IG 7.18 Additional Comment 6
	7.1.8 FIPS 140-2 IG 7.18 Additional Comment 9

	7.2 SP800-90B Compliance
	7.2.1 SP800-90B Section 3.1.1
	7.2.2 SP800-90B Section 3.1.2
	7.2.3 SP800-90B Section 3.1.3
	7.2.4 SP800-90B Section 3.1.4
	7.2.5 SP800-90B Section 3.1.5
	7.2.6 SP800-90B Section 3.1.5.2
	7.2.7 SP800-90B Section 3.1.6
	7.2.8 SP800-90B Section 3.2.1 Requirement 1
	7.2.9 SP800-90B Section 3.2.1 Requirement 2
	7.2.10 SP800-90B Section 3.2.1 Requirement 3
	7.2.11 SP800-90B Section 3.2.1 Requirement 4
	7.2.12 SP800-90B Section 3.2.1 Requirement 5
	7.2.13 SP800-90B Section 3.2.1 Requirement 6
	7.2.14 SP800-90B Section 3.2.1 Requirement 7
	7.2.15 SP800-90B Section 3.2.2 Requirement 1
	7.2.16 SP800-90B Section 3.2.2 Requirement 2
	7.2.17 SP800-90B Section 3.2.2 Requirement 3
	7.2.18 SP800-90B Section 3.2.2 Requirement 4
	7.2.19 SP800-90B Section 3.2.2 Requirement 5
	7.2.20 SP800-90B Section 3.2.2 Requirement 6
	7.2.21 SP800-90B Section 3.2.2 Requirement 7
	7.2.22 SP800-90B Section 3.2.3 Requirement 1
	7.2.23 SP800-90B Section 3.2.3 Requirement 2
	7.2.24 SP800-90B Section 3.2.3 Requirement 3
	7.2.25 SP800-90B Section 3.2.3 Requirement 4
	7.2.26 SP800-90B Section 3.2.3 Requirement 5
	7.2.27 SP800-90B Section 3.2.4 Requirement 1
	7.2.28 SP800-90B Section 3.2.4 Requirement 2
	7.2.29 SP800-90B Section 3.2.4 Requirement 3
	7.2.30 SP800-90B Section 3.2.4 Requirement 4
	7.2.31 SP800-90B Section 3.2.4 Requirement 5
	7.2.32 SP800-90B Section 3.2.4 Requirement 6
	7.2.33 SP800-90B Section 3.2.4 Requirement 7
	7.2.34 SP800-90B Section 4.3 Requirement 1
	7.2.35 SP800-90B Section 4.3 Requirement 2
	7.2.36 SP800-90B Section 4.3 Requirement 3
	7.2.37 SP800-90B Section 4.3 Requirement 4
	7.2.38 SP800-90B Section 4.3 Requirement 5
	7.2.39 SP800-90B Section 4.3 Requirement 6
	7.2.40 SP800-90B Section 4.3 Requirement 7
	7.2.41 SP800-90B Section 4.3 Requirement 8
	7.2.42 SP800-90B Section 4.3 Requirement 9
	7.2.43 SP800-90B Section 4.4

	7.3 NIST Clarification Requests
	7.3.1 Sensitivity of Jitter Measurements
	7.3.2 Dependency Between Jitter Measurements

	7.4 Reuse of SP800-90B Analysis

	8 Conclusion
	8.1 Threat Scenario
	8.1.1 Interleaving of Time Stamp Collection

	A Availability of Source Code
	B Linux Kernel Implementation
	B.1 Kernel Crypto API Interface
	B.2 Kernel DebugFS Interface
	B.3 Integration with random.c
	B.4 Test Cases

	C Libgcrypt Implementation
	D OpenSSL Implementation
	E Shared Library And Stand-Alone Daemon
	F LFSR Loop Entropy Measurements
	F.1 Intel Core i5 4200U
	F.2 Intel Core i7 3537U
	F.3 Intel Core i7 2620M compiled with Clang
	F.4 Intel Core i5 2430M
	F.5 Intel Core i5 2410M
	F.6 Intel Core i7 Q720
	F.7 Intel Xeon E5504
	F.8 Intel Core 2 Quad Q6600
	F.9 Intel Core 2 Duo T5870
	F.10 Intel Core 2 Duo With Windows 7
	F.11 Intel Core Duo L2400
	F.12 Intel Core Duo Solo T1300 With NOVA Microkernel
	F.13 Intel Core Duo Solo T1300 With Fiasco.OC Microkernel
	F.14 Intel Core Duo Solo T1300 With Pistachio Microkernel
	F.15 Intel Atom Z530
	F.16 Intel Core 2 Duo on Apple MacBook Pro
	F.17 Intel Celeron
	F.18 Intel Mobile Celeron 733 MHz
	F.19 Intel Pentium P4 3GHz
	F.20 Intel Pentium P4 Mobile
	F.21 AMD Opteron 6128
	F.22 AMD Phenom II X6 1035T
	F.23 AMD Athlon 7550
	F.24 AMD Athlon 4850e
	F.25 AMD E350
	F.26 AMD Semperon 3GHz
	F.27 VIA Nano L2200
	F.28 MIPS 24KC v7.4
	F.29 MIPS 24KC v4.12 Ikanos Fusiv Core
	F.30 MIPS 4KEc V6.8
	F.31 MIPS 4KEc V4.8
	F.32 ARM Exynos 5250 with Fiasco.OC Microkernel
	F.33 ARMv7 rev 1 – Samsung Galaxy S2
	F.34 ARMv7 rev 2 – LG Nexus 4.2
	F.35 ARMv7 rev 0 – Samsung Galaxy S4
	F.36 ARMv7 rev 1 – HTC Desire Z
	F.37 ARMv6 rev 7
	F.38 IBM POWER7 with AIX 6.1
	F.39 IBM POWER7 with Linux
	F.40 IBM POWER5 with Linux
	F.41 Apple G5 QuadCore PPC 970MP
	F.42 SUN UltraSparc IIIi
	F.43 SUN UltraSparc II
	F.44 SUN UltraSparc IIi (Sabre)
	F.45 IBM System Z z10
	F.46 IBM System Z z10
	F.46.1 64 bit Word Size
	F.46.2 31 bit Word Size

	F.47 Intel Core i7 2620M With RDTSC Instruction
	F.47.1 Ubuntu Linux 13.04 with KDE
	F.47.2 Ubuntu Linux 13.04 without X11
	F.47.3 OpenIndiana 151a7
	F.47.4 NetBSD 6.0
	F.47.5 FreeBSD 9.1

	G BSI AIS 20 / 31 NTG.1 Properties
	H Bibliographic Reference
	I Thanks
	J License

